In Part 2 of the two-paper series, the asymmetrically laminated piezoelectric shell subjected to distributed bias voltage as modeled in Part 1 is analytically and numerically investigated. Three out-of-plane degrees-of-freedom (DOFs) and a number of in-plane DOFs are retained to study the shell's snap-through phenomenon. A convergence study first confirms that the number of the in-plane DOFs retained affects not only the number of predicted equilibrium states when the bias voltage is absent but also the prediction of the critical bias voltage for snap-through to occur and the types of snap-through mechanisms. Equilibrium states can be symmetric or asymmetric, involving only a symmetric out-of-plane DOF, and additional asymmetric out-of-plane DOFs, respectively. For symmetric equilibrium states, the snap-through mechanism can evolve from the classical bidirectional snap-through and latching to a new type of snap-through that only allows snap-through in one direction (i.e., unidirectional snap-through), depending on the distribution of the bias voltage. For asymmetric equilibrium states, degeneration can occur to the asymmetric bifurcation points when the radii of curvature are equal. Finally, the unidirectional snap-through renders an explanation to the experimental findings in Part 1.

References

References
1.
Tai
,
W. C.
,
Luo
,
C.
,
Yang
,
C. W.
,
Cao
,
G.
, and
Shen
,
I. S.
,
2018
, “
Voltage-Induced Snap-Through of an Asymmetrically Laminated, Piezoelectric, Thin-Film Diaphragm Micro-Actuator: Part 1—Experimental Studies and Mathematical Modeling
,”
ASME J. Vib. Acoust.
, accepted.
2.
Przekop
,
A.
, and
Rizzi
,
S.
,
2006
, “
Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature
,”
AIAA J.
,
44
(
8
), pp.
1767
1778
.
3.
Przekop
,
A.
, and
Rizzi
,
S.
,
2007
, “
Dynamic Snap-Through of Thin-Walled Structures by a Reduced-Order Method
,”
AIAA J.
,
45
(
10
), pp.
2510
2519
.
4.
Lee
,
C.-C.
,
Cao
,
G.
, and
Shen
,
I.
,
2010
, “
Effects of Residual Stresses on Lead-Zirconate-Titanate (PZT) Thin-Film Membrane Microactuators
,”
Sens. Actuators, A: Phys.
,
159
(
1
), pp.
88
95
.
5.
Luo
,
C.
,
Tai
,
W.
,
Yang
,
C.-W.
,
Cao
,
G.
, and
Shen
,
I.
,
2016
, “
Effects of Added Mass on Lead-Zirconate-Titanate Thin-Film Microactuators in Aqueous Environments
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061015
.
6.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
, Boca Raton, FL.
7.
Varelis
,
D.
, and
Saravanos
,
D. A.
,
2006
, “
Coupled Mechanics and Finite Element for Non-Linear Laminated Piezoelectric Shallow Shells Undergoing Large Displacements and Rotations
,”
Int. J. Numer. Methods Eng.
,
66
(
8
), pp.
1211
1233
.
8.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2014
, “
Symmetry Breaking in an Initially Curved Pre-Stressed Micro Beam Loaded by a Distributed Electrostatic Force
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2047
2061
.
9.
Maurini
,
C.
,
Pouget
,
J.
, and
Vidoli
,
S.
,
2007
, “
Distributed Piezoelectric Actuation of a Bistable Buckled Beam
,”
Eur. J. Mech.-A/Solids
,
26
(
5
), pp.
837
853
.
10.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
(
6–8
), pp.
445
468
.
This content is only available via PDF.