A new model for a gas-filled encapsulated thermal-acoustic transducer, which uses newly devised carbon nanotube (CNT) thin film is developed and the exact and approximate solutions are derived. A comparison between theoretical prediction and experimental data is presented and excellent agreement is reported. The frequency response for this acoustic transducer is investigated and the acoustic response of as a function of window–thin-film distance of the encapsulated transducer is discussed. An optimal distance between window and thin film is successfully derived and used in some practical examples. Resonance takes place for a suitable input frequency, and thus such transducers can be used to either generate acoustic waves of specific frequency or to filter specific resonant frequencies from a wide spectrum of signals. This kind of transducer can be immersed in different liquid media. A gaseous medium shows better performance at lower frequency while it is otherwise for a liquid medium. The conclusions derived in this work could be regarded as effective guidelines and information for enhancing thermal-acoustics efficiency conversion, as well as for the optimal design of a thermal-acoustic transducer.

Introduction

Thermophone, whose mechanism of acoustic generation is different from conventional electro-acoustic devices in which sound is produced by the mechanical vibration [1–4], was first studied by Arnold and Crandall [5] almost a century ago. Because materials with a low heat capacity were unavailable at that time, the acoustic pressure emitted from their thermophone was very small [6]. Owing to rapid advancement of nanotechnology and nanomaterials, in particular the discovery of carbon nanotubes in recent years, thermal-acoustics again attracts wide attention and the subject is undergoing fast development [7]. In 1999, an efficient ultrasound emitter composed of a 30 nm thick aluminum film on a microporous silicon layer (10 mm thick) and a p-type crystalline silicon (c-Si) wafer was reported by Shinoda et al. [8]. Another recently remarkable discovery by Xiao et al. [6] is the generation of powerful acoustic waves when an alternating current (ac) is applied to a carbon nanotube (CNT) thin film drawn from an array of CNT forests [9]. Aliev et al. [10] conducted the same experiment as that of Xiao et al. [6] but the CNT thin film was placed in a liquid medium. A strong thermal-acoustic response was also detected for an aligned array of multiwalled carbon nanotube (MWCNT) forests by Kozlov et al. [11]. In 2011, a graphene-on-paper thermal-acoustic source was fabricated and tested by Tian et al. [12]. It was also demonstrated that considerable acoustic energy can be emitted from a suspended metal wire array when an alternating current is applied [8,13,14]. The conversion efficiency from electrical power to acoustic power for a thermophone was discussed by Vesterinen et al. [14] and Tian et al. [12]. In addition, Xiao et al. [15] also recorded the thermal-acoustic response in different gaseous media and stated that higher acoustic pressure levels can be achieved in a gaseous medium with smaller heat capacity. All of these thermophones have one common feature, i.e., small heat capacity per unit area for the thermal-acoustic source [13].

Although many experiments were conducted with different pieces of supporting theoretical analysis, the development of a rigorous model based on theoretical analysis has been lacking. In Arnold and Crandall [5], they did not consider the effect of heat capacity per unit area of the thin film. Xiao et al. [6] revised Arnold and Crandall's model but his was only suitable for a far-field response. By applying Green's function, Vesterinen et al. [14] presented an acoustic pressure expression, which considered the effect of a heat-absorbing substrate. Hu et al. [16] explained the experimental results of Shinoda et al. [8] by solving a set of coupled thermal-mechanical equations. Aliev et al. [17] measured the acoustic pressure response for the argon filled encapsulated MWCNT transducer but they did not present any theoretical analysis or explanation.

In this paper, a rigorous analytical model with theoretical formulation for a gas-filled encapsulated thermal-acoustic transducer which uses nanotube thin film is first proposed and a set of thermal-mechanical coupled equations is solved. Exact and approximate solutions are presented and the theoretical prediction compares well with the experimental results of Aliev et al. [17]. The transducer frequency response is analyzed and the influence of the distance between the nanotube thin film and the window of the encapsulated transducer is discussed. Finally, the acoustical response for a transducer immersed in different media is investigated.

Theoretical Model and the Solution

The diagram of a gas-filled encapsulated thermal-acoustic transducer is shown in Fig. 1. Gas is channeled into the chamber and a nanotube thin film is suspended in the middle of two windows, which are separated by the spacers. The chamber is sealed carefully with silicon paste or epoxy sealant on the edges. In order to eliminate the influence of reflected sound, the window on the left is made of soundproof material, such as aluminum foam. The distance between the left window and the nanotube thin film is large enough to ensure no influence of sound generated in the left-hand side of the chamber to the acoustic pressure on right-hand side of the nanotube thin film x>0 m. Therefore only the right-hand side of the nanotube thin film is considered.

Fig. 1
The cross section of the gas-filled encapsulated thermal-acoustic transducer with nanotube thin film
Fig. 1
The cross section of the gas-filled encapsulated thermal-acoustic transducer with nanotube thin film
Close modal
Upon applying an alternating current to the nanotube thin film in the encapsulated chamber, gas near the thin film is heated in a harmonic manner with respect to the period of current. Thus, the gas expands and contracts sinusoidally and sound is emitted from the chamber outwards through the window. Here, a one-dimensional treatment of the thermal and acoustic processes in the chamber is considered. Because window–thin-film distance is small, the acoustic wave could be considered as a plane wave [18]. The coupled governing linear equations for time-dependent acoustic pressure and temperature are [19]
{2pgt2-CT22pgx2=ρgCT2Tm2Tgt2Tgt-αg2Tgx2=αgκgpgt
(1)
where ρg is gas density, pg is gas pressure, CT=P0/ρ0 is defined as the isothermal sound velocity in gas, ρ0 is the reference gas density, P0 is the ambient pressure, t is time, Tg and Tm are varying temperature and average temperature in the chamber, respectively, αg is the coefficient of thermal diffusivity in gas, and κg is the thermal conductivity of gas. For an alternating current with frequency ω/2, the fundamental equation for the heated nanotube thin film is [20]
Pin-Pinejωt=2sβ0Tf+2sQ0+scsdTfdt
(2)
where Pin is the input power, β0 is rate of heat loss per unit area, s is the single-side area of the thin film, cs is heat capacity per unit area, Tf is temperature above its surroundings, and
Q0=-κgTg(x,t)x|x=0
is instantaneous heat flow per unit area from the thin film to the surrounding medium. Assuming pg(x,t)=p¯g(x)exp(jωt), Tg(x,t)=T¯g(x)exp(jωt), Tf(t)=Ta+T¯fexp(jωt), and substituting these expressions into Eqs. (1) and (2), the governing equations for the complex-amplitudes p¯g(x), T¯g(x), and T¯f can be obtained as
d2p¯gdx2+ω2CT2p¯g=ρgω2TmT¯g
(3)
αgd2T¯gdx2-jωT¯g=-jωρgCPP¯g
(4)
Pin-Pinexp(jωt)=2sβ0Ta+(2sβ0T¯f-2sκgdT¯gdx|x=0+jωscsT¯f)   ×exp(jωt)(5)
(5)
where γ is the heat capacity ratio of gas. Defining a set of notations as a=jω/αg, b=-jω/κg, c=ρgω2/Tm, d=-ω2/CT2, σ12=[a+d+(a+d)2-4(ad-bc)]/2, σ22=[a+d-(a+d)2-4(ad-bc)]/2, then the combination of Eqs. (3) and Eq. (4) gives
T¯g(x)=C1exp(-σ1x)+C2exp(σ1x)+C3exp(-σ2x)   +C4exp(σ2x)   for   0<x<lg
(6)
p¯g(x)=d1[C1exp(σ1x)+C2exp(σ1x)]+d2[C3exp(σ2x)+C4exp(σ2x)]for0<x<lg
(7)

in which d1=(σ12-a)/b, d2=(σ22-a)/b, and Ci(i=1,2,3,4) are the undetermined constant coefficients which could be determined from the boundary conditions.

The harmonically varying temperature is effectively and completely damped out at a distance of 2πμg in the gas, where μg=2αg/ω is the thermal diffusion length [21]. For a given length lg<2πμg, it is possible for the thermal wave to penetrate into the window; as a result, the thermal properties of the window influence the acoustic signals. Otherwise, there is no influence for lg>2πμg. Hence, two separate cases are discussed.

Window Independent Region lg>2πμg.

The temperature effect does not reach the inner side of the window and hence the thermal wave does not propagate in the window. The thermal and mechanical boundary conditions at x=0 and x=lg are
dp¯gdx=0;T¯g=T¯atx=0dp¯gdx=0;T¯g=0atx=lg
(8)
There are four boundary conditions and four undetermined coefficients, thus the equation is deterministic. Substitute Eqs. (6) and (7) into the boundary conditions and a set of equations for Ci(i=1,2,3,4) is obtained as
[1111-d1σ1d1σ1-d2σ2d2σ2exp(-σ1lg)exp(σ1lg)exp(-σ2lg)exp(σ2lg)-d1σ1exp(-σ1lg)d1σ1exp(σ1lg)-d2σ2exp(-σ2lg)d2σ2exp(σ2lg)](C1C2C3C4)=(T¯f000)
(9)
For brevity and convenience, the following notations are introduced:
M=d1σ1,   N=d2σ2,   E1=exp(σ1lg),   E2=exp(σ2lg)
(10)
then Eq. (9) is simplified as
[1111-MM-NN1/E1E11/E2E2-M/E1ME1-N/E2NE2](C1C2C3C4)=(T¯f000)
(11)
Introducing eight new notations as follows:
R1=12(1-NM)(1-E12)+E1E2-1R2=12(1+NM)(1-E12)+E1E2-1Q1=(1-NM)(1E2-E1)Q2=(1+NM)(E2-E1)D1=-12(1+E12),   F1=-E1W3=D1Q2-F1R2R1Q2-R2Q1,   W4=D1Q1-F1R1R1Q2-R2Q1
(12)
allows Eq. (11) to be simplified to
[1111021-NM1+NM00R1R200Q1Q2](C1C2C3C4)=T¯f(11D1F1)
(13)
The solution to Eq. (13) is
C1=W1T¯f,   C2=W2T¯f,   C3=W3T¯f,   C4=W4T¯f
(14)
where
W1=12[1-(W3+W4)-NM(W3-W4)]W2=12[1-(W3+W4)+NM(W3-W4)]
(15)
Substituting Eq. (14) into Eq. (6) yields
Q0=-κgdTgdx|x=0=κg(σ1W1-σ1W3+σ2W2-σ2W4)T¯f·exp(jωt)
(16)
Then substituting Q0 into Eq. (5) gives
Ta=Pin2sβ0Tf=-Pin2s1β0-κg(jωC0-NMjωαg)(W4-W3)+j12ωcs
(17)
Combining Eqs. (7),(14), and (17), the exact expressions for acoustic pressure can be obtained. However, these expressions are still too complicated to allow convenient analysis. When ωP0/(ρ0αg), substituting all known constant parameters into a,b,c,d yields a>>d. Hence, for this case [18,22]
σ12a+(γ-1)σ22σ22d/γd1=(γ-1)d/γbd2=(d/γ-a)/b
(18)
and furthermore,
|d1||d2||d1σ1||d2σ2|
(19)
or |N|>>|M| can be deduced. For lg>2πμg, we have E1>7228.35exp(j) and E1>>E2. For further simplification, the following approximate expressions can be obtained:
D1Q2-F1R2-12NME12E2F1R1-D1Q1-12NME12E2R1Q2-R2Q112(NM)2E12E22-1E2W3=D1Q2-F1R2R1Q2-R2Q1-MNE22E22-1W4=D1Q1-F1R1R1Q2-R2Q1-MN1E22-1W4-W3MN      W4+W3-MNE22+1E22-1
(20)
Based on the simplified expression in Eq. (20), T¯f can be expressed as
T¯f=-Pin2s1β0+κgjωαg+j12ωcs
(21)
and d1W1d2W3,d1W1d2W4,d1W2d2W3,d1W2d2W4. Thus, the first two terms in Eq. (7) are omitted and the approximate acoustic pressure can be expressed as
p¯g(x)=Pin2sγ1(β0+κgω2αg)+j(κgω2αg+12ωcs)×jωαgκgC0(exp(2kglg)exp(2kglg)1exp(kgx)+1exp(2kglg)1×exp(kgx))
(22)

for 0<x<lg, where C0 is the isentropic velocity in gas and kg=jω/C0. It can be seen that the second term in the brackets decreases with the increasing lg while the first term tends to 1.

Window Dependent Region lg<2πμg.

The temperature affects the window and the thermal wave in the window needs to be considered. The thermal conductivity equation for the window is
Tst-αs2Tsx2=0
(23)
Assuming a relatively thick window which prevents the thermal wave to penetrate through the window, ensures there is no thermal wave reflection in the window. The solution to Eq. (23) can be obtained by assuming Ts(x,t)=T¯s(x)exp(-jωt) as [23]
T¯s=C5exp(ks(lg-x))      (lg<x<lg+L)
(24)
where C5 is the undetermined coefficient and L is the thickness of the window. There are five boundary conditions for determining the five coefficients Ci(i=1,2,,5),
dp¯gdx=0;T¯g=T¯fatx=0dp¯gdx=0;T¯g=T¯;κgdT¯gdx=κsdT¯sdxatx=lg
(25)
Substituting Eqs. (6) and (7) into the boundary conditions in Eq. (25) and eliminating C5 yields the equation for the undetermined coefficients Ci(i=1,2,3,4) as
[1111-d1σ1d1σ1-d2σ2d2σ2(κsks-κgkg*)exp(-σ1lg)(κsks+κgkg*)exp(σ1lg)(κsks-κgkg)exp(-σ2lg)(κsks+κgkg)exp(σ2lg)-d1σ1exp(-σ1lg)d1σ1exp(σ1lg)-d2σ2exp(-σ2lg)d2σ2exp(σ2lg)](C1C2C3C4)=(T¯f000)
(26)
where kg*=jω/αg and ks=jω/αs. Using the notations defined in Eq. (10), Eq. (26) is simplified as
[1111MMNN(1A)/E1(1+A)E1(1B)/E2(1+B)E2M/E1ME1N/E2NE2](C1C2C3C4)=(T¯f000)
(27)
where A=κgkg*/κsks,B=κgkg/κsks. The following notations are defined in order to express concisely the solution to Eq. (27),
A1=1+A1-A,   A2=1-B1-A,   A3=1+B1-A,G1=12A1E12(NM-1)-12(NM+1)+A2E1E2-1,G2=-12A1E12(NM+1)+12(NM-1)+A3E1E2,H1=12E1(NM+1)+12(NM-1)E1-NM1E2,H2=-12(NM+1)E1+12(1-NM)1E1+NME2,D2=-12(1+A1E12),      F2=-12(E1-1E1),S3=D2H2-F2G2G1H2-G2H1,      S4=D2H1-F2G1G1H2-G2H1
(28)
Then the solution to Eq. (27) can be expressed as
C1=S1T¯f,   C1=S2T¯f,   C3=S3T¯f,   C4=S4T¯f
(29)
where
S1=12[1-(S3+S4)-NM(S3-S4)],S2=12[1-(S3+S4)+NM(S3-S4)]
(30)
Combining Eqs. (5),(6), and (29), T¯f and Ta can be obtained and the expressions are similar to Eq. (17) except that W3, W4 should be replaced by S3, S4. Even with these parameters determined, the expressions are again too complicated to analyze. An approximate simplified expression should be derived. Using the approximate expressions for d1,d2,σ1,σ2,N,M derived previously, the following approximations are obtained:
S3MN-A1E22+E2/E1-E22/E12A1E22-A1+1/E12-E22/E12S4MN-A1+A1E2/E1-1/E12A1E22-A1+1/E12-E22/E12S4-S3MNA1E12(E22-1)+E1E2(A1-1)A1E12E22-A1E12+1-E22S4+S3MN-A1E12(E22+1)+E1E2(1+A1)A1E12E22-A1E12+1-E22
(31)
From Eq. (31), it is concluded E1>16.8exp(j) for lg>2μg and similar approximate expressions as Eq. (20) could be obtained with W3, W4 replaced by S3, S4. Therefore the window influences the acoustic pressure significantly only when lg<2μg. Further analyzing d1S1 and d1S2 yields the following inequalities:
d1S1d2S3d1S1d2S4d1S2d2S3d1S2d2S4
(32)
Hence, the first two terms in Eq. (7) can be omitted and the final expression for pressure is
p¯g(x)Pin2s1β0+κgjωαgNM(S4S3)+j12ωcs[d2S3exp(kgx)+d2S4exp(kgx)]
(33)

for 0<x<lg. Acoustic pressure in the chamber is expressed in Eqs. (22) and (33). The acoustic pressure outside of the chamber is the superposition of two acoustic waves, one is sound in the chamber transmitted through the window, and the other is sound generated from window vibration. These two parts of acoustic pressure are obtained separately as follows.

Sound Transmission Through the Window.

Because of the small window–thin-film distance, the acoustic wave in the chamber is mainly a plane wave and the only normal incidence of sound onto the window is considered. The discussion related to sound transmission is presented in Appendix  A. From Eqs. (22) and (33), it is clear that there are two sets of pressure waves, i.e., one related to exp(-σ2x) which propagates in the positive direction, and the other related to exp(σ2x) which propagates in the negative direction. Only the one which propagates towards the positive direction will transmit through the window. Thus, acoustic transmission through the window can be expressed, for x>lg+L as
p¯gt(x)={Pin2s(γ-1)jωαgκgC0exp(kglg)exp(2kglg)-1Texp(jωCm(L+lg-x))   (β0+κgω2αg)+j(κgω2αg+12ωcs)forlg>2πμgPin2sd2S3Texp(jωCm(L+lg-x)-kglg)β0+κgjωαgNM(S4-S3)+j12ωcsforlg<2πμg
(34)

where L is the thickness of the window, Cm is the isentropic sound velocity in the medium outside the chamber, and T is the sound transmission coefficient of the window (see Appendix  A).

Sound Generated From Window Vibration.

Forced vibration of the window occurs when a harmonic acoustic pressure expressed in Eq. (22) or Eq. (33) is applied on the inner side of the window. It should be noted that the average chamber temperature increases with increasing electrical power upon applying an alternating current to the nanotube thin film [10]. At the same time, there exists an additional constant pressure which is imposed to the window owing to an increase in temperature. Since silicon paste or epoxy sealant used to seal the window and spacer is soft, the vibrating window could be considered to have non-fully clamped, elastically restrained boundary conditions with torsional stiffness [24]. For simplicity, simply support boundary conditions are assumed and more specific boundary conditions could be investigated at a later stage. The window could then be viewed as a simple support plate with simultaneous constant and harmonic pressure loadings. The acoustic pressure generated from window vibration is (see Appendix  B),
p¯vp(x)=64ρmCmρwLπ4m=1,3,n=1,3,jωp¯g(lg)m2n2(ωmn2-ω2)   ×exp(jωCm(lg+L-x))
(35)

where ρm is the density of the medium with which the transducer is immersed, ρw is the density of the window, L is the window thickness, and ωmn is the natural frequency for mode (m,n).

The acoustic pressure outside the chamber is the superposition of sound transmission and the sound generated by window vibrations is
p¯m(x)=p¯vp(x)+p¯gt(x)
(36)

It should be noted that Eq. (36) is a near-field plane wave. When sound propagates far enough away from the window, it becomes a spherical wave and the acoustic pressure expression should be revised. In this paper, the analysis focuses on the plane wave. In addition, when using Eq. (36) to calculate the acoustic pressure outside the chamber, the thermal length and the window–thin-film distance should always be compared in order to choose an appropriate equation for calculating the acoustic pressure inside the chamber.

Numerical Results and Discussion

In this section, numerical examples for an argon-filled encapsulated chamber are presented. The chamber is placed in an open space in air. Different types of window are studied and analytical predictions are compared with published experimental data [17]. The rectangular windows are made of titanium foil and silicon wafer. The nanotube thin films used are MWCNT sheets and different window–thin-film distances are studied. All constant parameters required in Eq. (36) to determine the acoustic pressure are presented in Tables 1 and 2. Although it varies for different input powers [15], the rate of heat loss per unit area β0 is taken as 15WK-1m-2 because it does not significantly influence the acoustic pressure. In addition, because the CNT thin film is placed in an encapsulated chamber, convection loss may be small as compared to radiation loss. As the heat loss is mainly attributed to radiation loss, the lower limit of β0 is taken in this paper. The heat capacity per unit area cs=7.7×10-3J/m2K as proposed by Xiao et al. [6] is adopted. The variation of average temperature for varying applied power is omitted when computing acoustic pressure in the chamber and a constant average temperature T=300K is assumed in the examples.

Table 1

Constants used in the analysis for T = 300 K

ρ0(kg/m3)Cp(JK-1/m3)κ(W/mK)C0(m/s)α(m2/s)γ
Aira1.1610060.02623472.25×10-51.4
Argona1.6225520.340.01783232.06×10-51.664
Waterb10001484
Methanolb7921143
ρ0(kg/m3)Cp(JK-1/m3)κ(W/mK)C0(m/s)α(m2/s)γ
Aira1.1610060.02623472.25×10-51.4
Argona1.6225520.340.01783232.06×10-51.664
Waterb10001484
Methanolb7921143
a

Reference [15].

b

Reference [10].

Table 2

Mechanical and thermal properties of window

E(GPa)ρ0(kg/m3)υC0(m/s)κ(W/mK)α(m2/s)
Titaniuma11645000.33500021.99.3×10-6
Silicon waferb129–18623300.22–0.287470–8935141.28.66×10-5
E(GPa)ρ0(kg/m3)υC0(m/s)κ(W/mK)α(m2/s)
Titaniuma11645000.33500021.99.3×10-6
Silicon waferb129–18623300.22–0.287470–8935141.28.66×10-5
a

Reference [25].

b

Reference [26].

The first example is a titanium window encapsulated chamber. The experimental results [17] relate the efficiency to input electrical power, which is rather inconvenient for comparison. Instead the results are converted to the efficiency of acoustic pressure outside the chamber and the comparison is shown in Fig. 2. The thickness of the titanium window is 125μm and the applied frequency is 1500 Hz. The distance between the MWCNT sheet and the window separated by the ceramic spacer is 0.64 mm [17]. The window area is 7.5cm×6.5cm, which is the same as the MWCNT sheet area. The thermal length at 1500 Hz is 0.41 mm, hence, lg>2πμg. From Fig. 2, it can be observed the analytical predictions are in very good agreement with experimental results. The error does not exceed 5% and the maximum error occurs at a low input power of 1.8 W. At this low applied power, the average temperature increase in the chamber is not high enough to induce a significant constant pressure on the window. Hence, the acoustic pressure due to window forced vibration is significant as compared to the pressure contributed by sound transmission. Due to the different assumption of window boundary conditions with respect to the actual experimental conditions, a slight error occurs at this low applied power. At higher applied powers, the chamber average temperature increases with increasing applied power; thus a higher constant pressure on the window exists which increasingly suppresses the window forced vibration. Hence, the acoustic pressure contributed by window vibration becomes increasingly insignificant.

Fig. 2
Acoustic pressure of encapsulated thermal-acoustic transducer fabricated using a 125 μm thick titanium window at frequency of 1500 Hz for different applied powers
Fig. 2
Acoustic pressure of encapsulated thermal-acoustic transducer fabricated using a 125 μm thick titanium window at frequency of 1500 Hz for different applied powers
Close modal

In a second example, the efficiency and acoustic pressure for a silicon wafer window are investigated. The dimensions of this chamber are those of Aliev et al. [17]. It can be deduced that lg<2πμg at a frequency of 1400 Hz. A comparison of the analytical predictions with experiment is shown in Fig. 3. The efficiency is 2s(prms2/ρ0C0)/Pin [10], in which prms is the root mean square of acoustic pressure, ρ0 is the air density, and C0 is the acoustic velocity in air. From Fig. 3, again excellent agreement between the analytical prediction and experiment is achieved. The transducer energy efficiency is linearly dependent on the input power as shown in Fig. 3(b). The efficiency reaches 0.017% which is a high conversion efficiency with respect to the mechanically driven acoustic transducers [24]. The acoustic pressure approaches 117 dB which is significantly higher than that for an applied power of 39.6 W to conventional transducers.

Fig. 3
(a) Acoustic response and (b) conversion efficiency for an encapsulated thermal-acoustic transducer composed of a 0.75 mm thick silicon wafer window at frequency of 1400 Hz for different applied powers. The silicon wafer window area is 8 cm × 6 cm and the window–MWCNT sheet distance is 0.25 mm.
Fig. 3
(a) Acoustic response and (b) conversion efficiency for an encapsulated thermal-acoustic transducer composed of a 0.75 mm thick silicon wafer window at frequency of 1400 Hz for different applied powers. The silicon wafer window area is 8 cm × 6 cm and the window–MWCNT sheet distance is 0.25 mm.
Close modal

In another example, the frequency response for an argon-filled encapsulated chamber transducer with a window made of titanium and silicon wafer is shown in Fig. 4. The windows are 125μm thick and the input electrical power is 1 W. The area is 8cm×6cm for both the titanium window and silicon wafer window. The window–MWCNT sheet distance for the titanium and silicon wafer window chambers is always taken as half of the thermal length (2πμg) of the temperature wave in the chamber.

Fig. 4
Frequency response of the argon-filled encapsulated chamber transducer (a) titanium window and (b) silicon wafer window. The measured points are within the range of a plane wave.
Fig. 4
Frequency response of the argon-filled encapsulated chamber transducer (a) titanium window and (b) silicon wafer window. The measured points are within the range of a plane wave.
Close modal

It is obvious that resonance occurs for both transducers. The resonance frequencies are 3100 and 5400Hz for the titanium transducer input frequencies lower than 6000Hz. However, there exists only one resonance frequency, at 5000 Hz, for the silicon wafer transducer for input frequencies lower than 6000Hz. The difference is mainly due to different material properties. For identical thermal and geometric boundary conditions, the resonance frequency of the silicon wafer plate is higher than that of the titanium plate. Therefore, the resonance frequency could be tailored by either material selection or by window dimensioning. The acoustic pressure decreases with increasing frequency for both transducers except at resonance. Hence, this transducer can be used as a resonator. From Fig. 4, it is observed that the acoustic pressure is very high at resonance, thus it can be used to either generate acoustic waves at specific frequencies or to select specific frequencies from a signal. In particular, if specific resonance frequencies can be chosen, it can be used as a musical instrument.

Referring to Eq. (22), it is noticed that the window–thin-film distance lg is a very important parameter for the acoustic pressure. In this example, the titanium window transducer is chosen to illustrate the influence of this parameter on acoustic pressure. The relation of acoustic pressure with distance lg is shown in Fig. 5(a). It is observed that there exists an extreme value located at a distance 0.2×2πμg. The acoustics pressure decreases with increasing window–thin-film distance. For different transducers, the extreme value may be at different locations. Hence, to enhance the efficiency of a gas-filled encapsulated chamber transducer, a proper window–thin-film distance corresponding to the extreme acoustic pressure is recommended. It should be noted that the acoustic pressure is determined through an exact acoustic expression for a distance that is smaller than half of the thermal length.

Fig. 5
Acoustic response for an encapsulated thermal-acoustic transducer (a) for a 1 mm thick titanium window at frequency of 1500 Hz with varying lg (b) for different media in which the transducer is immersed and with distance equals to half of the thermal length and the thickness of titanium window is 125 μm. The titanium window area is 7.5 cm × 6.5 cm and the input power is 1 W.
Fig. 5
Acoustic response for an encapsulated thermal-acoustic transducer (a) for a 1 mm thick titanium window at frequency of 1500 Hz with varying lg (b) for different media in which the transducer is immersed and with distance equals to half of the thermal length and the thickness of titanium window is 125 μm. The titanium window area is 7.5 cm × 6.5 cm and the input power is 1 W.
Close modal

The acoustic response as shown in Fig. 5(b) is affected by different media in which the transducer is immersed. The transducer is placed in a liquid medium with the window parallel to the liquid surface and the distance from the transducer (i.e., window) to liquid surface is 20cm. It is noticed that resonance occurs for different media, while the acoustic pressure is very different for air and water. The response of methanol is almost the same as that of water. Thus the acoustic response outside the transducer is significantly affected by the medium in which the transducer is immersed. A gaseous medium shows a better performance at a lower frequency with respect to the resonant frequency, while for liquid, a higher acoustic pressure is achieved at a higher frequency with respect to the resonant frequency.

Conclusion

A new model for a gas-filled encapsulated thermal-acoustic transducer is developed and exact and approximate solutions are derived. A comparison between analytical predictions and experimental results are presented and excellent agreement is reported. The frequency response for this acoustic transducer is investigated and the effect of window–thin film distance of the encapsulated transducer to the acoustic response is discussed. For a suitably chosen input frequency, resonance takes place and thus this kind of transducer can be used to either generate acoustic waves of specific frequency or to filter specific resonant frequencies from a wide spectrum of signal. To enhance conversion efficiency from electrical power to acoustic power, an optimal window–thin-film distance should be used. Because the window transmission coefficient influences acoustic pressure outside the chamber, the acoustic response is different for different transducer media. A gaseous medium results in a better performance at lower frequency while it is otherwise for a liquid medium. Although the different boundary conditions for forced window vibrations are slightly different from those of the experiment, the comparisons provide evidence that the model can be used as a guideline and information for enhancing efficiency conversion as well as for the design of a thermal-acoustic transducer. Finally, although a rectangular window is used in the examples presented, the analytical prediction derived is by all means not restrictive and it is applicable to all other window shapes. For instance, any circular window can be used in place of the rectangular window.

Acknowledgment

The work described in this paper was supported by the National Natural Science Foundation of China through a research grant awarded to the Shenzhen Research Institute, City University of Hong Kong (Project No. 11272271). The support of The Hong Kong Scholars Program 2011 is also acknowledged.

Nomenclature

    Nomenclature
     
  • Cm =

    isentropic sound velocity in the medium outside chamber

  •  
  • CT=P0/ρ0 =

    isothermal sound velocity in gas

  •  
  • cs =

    heat capacity per unit area

  •  
  • j=-1 =

    imaginary unit

  •  
  • L =

    thickness of window

  •  
  • lg =

    distance between the CNT film and the window

  •  
  • pg =

    gas pressure

  •  
  • Pin =

    input power

  •  
  • P0 =

    ambient pressure

  •  
  • Q0=-κgTg(x,t)/x|x=0 =

    instantaneous heat flow per unit area from thin film to surrounding medium

  •  
  • s =

    single-side area of CNT thin film

  •  
  • T =

    sound transmission coefficient of the window

  •  
  • Tf =

    temperature above CNT film's surroundings

  •  
  • Tg =

    varying temperature in chamber

  •  
  • Tm =

    average temperature in chamber

  •  
  • αg =

    coefficient of thermal diffusivity in gas

  •  
  • β0 =

    rate of heat loss per unit area of heated CNT film

  •  
  • κg =

    thermal conductivity of gas

  •  
  • γ =

    heat capacity ratio of gas

  •  
  • ρ0 =

    reference gas density

  •  
  • ρm =

    density of the medium in which the transducer is immersed

  •  
  • ρw =

    density of window

  •  
  • ρg =

    gas density

  •  
  • ω =

    circular frequency

  •  
  • μg=2αg/ω =

    thermal diffusion length

  •  
  • υ =

    Poisson's ratio of window

Appendix A

A single-layer plate with thickness L and surrounded by two liquid media is shown in Fig. 6, where Pi is the incident acoustic pressure wave, Pr and Pt are the reflected and transmitted acoustic wave, respectively. For a normal incident wave, θ1=θ3=0, and the transmission coefficient is [27]

Fig. 6
Sound transmission through a plate
Fig. 6
Sound transmission through a plate
Close modal
T=2UZ3V(Z1+Z3)+j[(U2-V2)Z3+Z1]
(A1)

where U=(Z2/Z3)/sin(-k2L), V=Z2cot(-k2L)/Z3, Zi=ρiCi(i=1,2,3), k2=ω/C2. It should be noted that Ci(i=1,2,3) represents the wave velocity in different media.

For example, consider a titanium single-layer plate with thickness of 125 μm, which is used in the study in this paper. The first and third media are argon and air, respectively. Substituting all material constants shown in Table 1 into Eq. (A1) yields the magnitude of transmission coefficient as 0.036 which is far smaller than 1. This verifies that the sound-hard boundary condition for pressure assumed in this paper is reasonable.

Appendix B

The window of an encapsulated chamber transducer undergoes forced vibration when an electrical power is applied to the nanotube thin film. The average chamber temperature increases when the nanotube thin film is heated. Hence a distributed force on the window results and it can be determined using the ideal gas law q0=P0ΔT/T0, where P0, T0, and ΔT are the gas pressure, temperature, and temperature variation, respectively. Here the average temperature variation in the chamber is taken as ΔT=Ta/2, where Ta is expressed in Eq. (17). For a rectangular plate (see Fig. 7) with four simply supported boundaries, the plate deflection is given by [28]

Fig. 7
The coordinate system and dimensions for a plate
Fig. 7
The coordinate system and dimensions for a plate
Close modal
w=wmaxsinπxasinπyb      (0<x<a,0<y<b)
(B1)
and the maximum deflection at the center of the plate is [28]
wmax=16q0a4b4D0(a2+b2)π6
(B2)

where D0=Eh3/[12(1-υ2)] is the plate flexural rigidity, h is the plate thickness, a and b are plate length and width, E and υ are Young's modulus and Poisson's ratio, respectively. The plate tension can be approximated by (see Fig. 8)

Fig. 8
Force equilibrium for the cross section of a plate
Fig. 8
Force equilibrium for the cross section of a plate
Close modal
N1q0b2sinθ1,   N2q0a2sinθ2
(B3)
Assuming small plate deflection as compared to the other plate dimension, it can be shown that
sinθ12bwxb2+2wx2,   sinθ22awya2+2wy2
(B4)
where wx=wmaxsin(πx/a),wy=wmaxsin(πy/b). Combining Eqs. (B3) and (B4) gives
N1=q0b24wx+q0wx,   N2=q0a24wy+q0wy
(B5)
The resonance frequency of the plate with in-plane force is [28]
ωmn=D0ρwh[(mπa)2+(nπb)2]2+N1D0(mπa)2+N2D0(nπb)2
(B6)
When a variable, time-dependent load p=p0exp(jωt) is applied on the plate, the transverse velocity of the plate under forced vibration is [29]
v=16p0ρwhπ2m=1,3,n=1,3,jωexp(jωt)-jωmnexp(jωmnt)mn(ωmn2-ω2)   ×sinmπaxsinnπby   (0<x<a,0<y<b)
(B7)
Here, the amplitude of the applied load is p0=p¯g(lg). For a specific vibration mode (m,n), the velocity amplitude is small and its contribution to the acoustic pressure is omitted. Then the acoustic pressure generated by the mechanical window vibration can be expressed as
pvp(x,t)=p¯vp(x)exp(jωt)
(B8)
where
p¯vp(x)=64ρmCmρwhπ4m=1,3,n=1,3,jωp¯g(lg)m2n2(ωmn2-ω2)   ×exp(jωCm(lg+L-x))
(B9)

where ρm and Cm are density and acoustic velocity of the medium in which the transducer is immersed. It should be noticed that the averaged values for wx and wy are used to calculate the tension in Eq. (B5). Also, the averaged velocity in Eq. (B7) is taken to derive the acoustic pressure in Eq. (B9).

References

1.
Bédard
,
M.
, and
Berry
,
A.
,
2008
, “
Development of a Directivity-Controlled Piezoelectric Transducer for Sound Reproduction
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1271
1285
.10.1016/j.jsv.2007.10.016
2.
Sun
,
J. Q.
,
Norris
,
M. A.
,
Rossetti
,
D. J.
, and
Highfill
,
J. H.
,
1996
, “
Distributed Piezoelectric Actuators for Shell Interior Noise Control
,”
ASME J. Vibr. Acoust.
,
118
(
4
), pp.
676
681
.10.1115/1.2888351
3.
Preumont
,
A.
,
Francois
,
A.
, and
Dubru
,
S.
,
1999
, “
Piezoelectric Array Sensing for Real-Time, Broad-Band Sound Radiation Measurement
,”
ASME J. Vibr. Acoust.
,
121
(
4
), pp.
446
452
.10.1115/1.2894001
4.
Bailo
,
K. C.
,
Brei
,
D. E.
, and
Grosh
,
K.
,
2003
, “
Investigation of Curved Polymeric Piezoelectric Active Diaphragms
,”
ASME J. Vibr. Acoust.
,
125
(
2
), pp.
145
154
.10.1115/1.1547461
5.
Arnold
,
H. D.
, and
Crandall
,
I. B.
,
1917
, “
The Thermophone as a Precision Source of Sound
,”
Phys. Rev.
,
10
(
1
), pp.
22
38
.10.1103/PhysRev.10.22
6.
Xiao
,
L.
,
Chen
,
Z.
,
Feng
,
C.
,
Liu
,
L.
,
Bai
,
Z.-Q.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
Y.
,
Li
,
Q.
,
Jiang
,
K.
, and
Fan
,
S.
,
2008
, “
Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers
,”
Nano Lett.
,
8
(
12
), pp.
4539
4545
.10.1021/nl802750z
7.
Venkatasubramanian
,
R.
,
2010
, “
Applied Physics: Nanothermal Trumpets
,”
Nature
,
463
(
7281
), pp.
619
619
.10.1038/463619a
8.
Shinoda
,
H.
, Nakajima, T.,
Ueno
,
K.
, and
Koshida
,
N.
,
1999
, “
Thermally Induced Ultrasonic Emission From Porous Silicon
,”
Nature
,
400
(
6747
), pp.
853
855
.10.1038/23664
9.
Liu
,
K.
,
Sun
,
Y.
,
Chen
,
L.
,
Feng
,
C.
,
Feng
,
X.
,
Jiang
,
K.
,
Zhao
,
Y.
, and
Fan
,
S.
,
2008
, “
Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets With Tunable Physical Properties
,”
Nano Lett.
,
8
(
2
), pp.
700
705
.10.1021/nl0723073
10.
Aliev
,
A. E.
,
Lima
,
M. D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2010
, “
Underwater Sound Generation Using Carbon Nanotube Projectors
,”
Nano Lett.
,
10
(
7
), pp.
2374
2380
.10.1021/nl100235n
11.
Kozlov
,
M. E.
,
Haines
,
C. S.
,
Oh
,
J.
,
Lima
,
M. D.
, and
Fang
,
S.
,
2009
, “
Sound of Carbon Nanotube Assemblies
,”
J. Appl. Phys.
,
106
(
12
), p.
124311
.10.1063/1.3272691
12.
Tian
,
H.
,
Ren
,
T.-L.
,
Xie
,
D.
,
Wang
,
Y.-F.
,
Zhou
,
C.-J.
,
Feng
,
T.-T.
,
Fu
,
D.
,
Yang
,
Y.
,
Peng
,
P.-G.
,
Wang
,
L.-G.
, and
Liu
,
L.-T.
,
2011
, “
Graphene-on-Paper Sound Source Devices
,”
ACS Nano
,
5
(
6
), pp.
4878
4885
.10.1021/nn2009535
13.
Niskanen
,
A. O.
,
Hassel
,
J.
,
Tikander
,
M.
,
Maijala
,
P.
,
Gronberg
,
L.
, and
Helisto
,
P.
,
2009
, “
Suspended Metal Wire Array as a Thermoacoustic Sound Source
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163102
.10.1063/1.3249770
14.
Vesterinen
,
V.
,
Niskanen
,
A. O.
,
Hassel
,
J.
, and
Helistö
,
P.
,
2010
, “
Fundamental Efficiency of Nanothermophones: Modeling and Experiments
,”
Nano Lett.
,
10
(
12
), pp.
5020
5024
.10.1021/nl1031869
15.
Xiao
,
L.
,
Liu
,
P.
,
Liu
,
L.
,
Li
,
Q.
,
Feng
,
Z.
,
Fan
,
S.
, and
Jiang
,
K.
,
2011
, “
High Frequency Response of Carbon Nanotube Thin Film Speaker in Gases
,”
J. Appl. Phys.
,
110
(
8
), p.
084311
.10.1063/1.3651374
16.
Hu
,
H.
,
Zhu
,
T.
, and
Xu
,
J.
,
2010
, “
Model for Thermoacoustic Emission From Solids
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214101
.10.1063/1.3435429
17.
Aliev
,
A. E.
,
Lima
,
M. D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2010
, “
Supporting Online Materials for Underwater Sound Generation Using Carbon Nanotube Projectors
,”
Nano Lett.
,
10
(
7
), pp.
2374
2380
.10.1021/nl100235n
18.
Lim
,
C. W.
,
Tong
,
L. H.
, and
Li
,
Y. C.
,
2013
, “
Theory of Suspended Carbon Nanotube Thin Film as a Thermal-Acoustic Source
,”
J. Sound Vib.
(in press).
19.
McDonald
,
F. A.
, and
Wetsel
,
J. G. C.
,
1978
, “
Generalized Theory of the Photoacoustic Effect
,”
J. Appl. Phys.
,
49
(
4
), pp.
2313
2322
.10.1063/1.325116
20.
Xiao
,
L. C. Z.
,
Chen
,
Z.
,
Feng
,
C.
,
Liu
,
L.
,
Bai
,
Z. Q.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
Y. Y.
,
Li
,
Q.
,
Jiang
,
K. L.
, and
Fan
,
S.
,
2008
, “
Supporting Online Materials for Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers
,”
Nano Lett.
,
8
(
12
), pp.
4539
4545
.10.1021/nl802750z
21.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.10.1063/1.322296
22.
Hanping
,
H.
,
Wang
,
Y.
,
And Wang
,
Z.
,
2012
, “
Wideband Flat Frequency Response of Thermo-Acoustic Emission
,”
J. Phys. D: Appl. Phys.
,
45
, p.
345401
10.1088/0022-3727/45/34/345401
23.
Aamodt
,
L. C.
,
Murphy
,
J. C.
, and
Parker
,
J. G.
,
1977
, “
Size Considerations in the Design of Cells for Photoacoustic Spectroscopy
,”
J. Appl. Phys.
,
48
(
3
), pp.
927
933
.10.1063/1.323710
24.
Paul
,
O.
, and
Baltes
,
H.
,
1999
, “
Mechanical Behavior and Sound Generation Efficiency of Prestressed, Elastically Clamped and Thermomechanically Driven Thin Film Sandwiches
,”
J. Micromech. Microeng.
,
9
, pp.
19
29
.10.1088/0960-1317/9/1/002
25.
Wikipedia, 2013, “Titanium,” http://en.wikipedia.org/wiki/Titanium
26.
El-Cat, Inc., 2008, “Properties of Silicon and Silicon Wafers,” http://www.phy.duke.edu/~hx3/physics/silicon/silicon.htm
27.
Barnard
,
G. R.
,
Bardin
,
J. L.
, and
Whiteley
,
J. W.
,
1975
, “
Acoustic Reflection and Transmission Characteristics for Thin Plates
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
577
584
.10.1121/1.380486
28.
Leissa
,
A. W.
,
1969
,
Vibration of Plates, Scientific and Technical Information Division, National Aeronautics and Space Administration
,
U.S. GPO
,
Washington, D.C
.
29.
Ventsel
,
E.
,
2001
,
Thin Plates and Shells: Theory, Analysis, and Applications
,
Marcel Dekker
,
New York
.