Abstract

Quasi-periodic motions can be numerically found in piecewise-linear systems, however, their characteristics have not been well understood. To illustrate this, an incremental harmonic balance (IHB) method with two timescales is extended in this work to analyze quasi-periodic motions of a non-smooth dynamic system, i.e., a gear transmission system with piecewise linearities stiffness. The gear transmission system is simplified to a four degree-of-freedom nonlinear dynamic model by using a lumped mass method. Nonlinear governing equations of the gear transmission system are formulated by utilizing the Newton's second law. The IHB method with two timescales applicable to piecewise-linear systems is employed to examine quasi-periodic motions of the gear transmission system whose Fourier spectra display uniformly spaced sideband frequencies around carrier frequencies. The Floquet theory is extended to analyze quasi-periodic solutions of piecewise-linear systems based on introduction of a small perturbation on a steady-state quasi-periodic solution of the gear transmission system with piecewise linearities. Comparison with numerical results calculated using the fourth-order Runge-Kutta (RK) method confirms that excellent accuracy of the IHB method with two timescales can be achieved with an appropriate number of harmonic terms.

This content is only available via PDF.
You do not currently have access to this content.