Aquatic animals commonly oscillate their fins, tails, or other structures to propel and control themselves in water. These elements are not perfectly rigid, so the interplay between their stiffness and the fluid loading dictates their dynamics. We examine the propulsive qualities of a tail-like flexible beam actuated by a dynamic moment over a range of frequencies and flow speeds. This is accomplished using the equations of fluid-immersed beams in combination with a set of tractable expressions for thrust and efficiency. We solve these expressions over the velocity-frequency plane and show that the flexible propulsor has regions of both positive and negative thrust. We also show the behavior of a sample underwater vehicle with fixed drag characteristics as an illustration of a realizable system.

This content is only available via PDF.
You do not currently have access to this content.