Abstract

A simple configuration of an active Nonreciprocal Gyroscopic Meta-Material (NGMM) is presented. In the proposed NGMM system, a one-dimensional acoustic cavity is provided with piezoelectric boundaries acting as a collocated pair of sensors and actuators. The active piezo-boundaries are controlled by a simple control algorithm that synthesizes a virtual gyroscopic control action to impart desirable non-reciprocal characteristics which are tunable both in magnitude and phase. The dynamic model of a prototype of the NGMM cell is experimentally identified in an attempt to provide means for predicting the characteristics of the virtual gyroscopic controller for various control gains during forward and backward propagations. The theoretical predictions are validated experimentally without the need for any physical dynamic controller which was provided, in previous studies, by using a dummy NGMM cell. Such a simplified arrangement enables the fast execution of the controller with enhanced frequency bandwidth capabilities. The experimental and theoretical characteristics of the NGMM cell are monitored and predicted for different control gain in order to evaluate its behavior for both forward and backward propagation. The obtained experimental results are compared with the theoretical predictions and are found to be in close agreement. The presented concepts provide the foundation necessary for implementation of NGMM that can be employed to more complex 2D and 3D critical structures in order to achieve non-reciprocal behavior in a simple and programmable manner.

This content is only available via PDF.
You do not currently have access to this content.