Abstract

Pyramidal truss sandwich panels (PTSPs) are widely used in engineering structures and their face sheets and core parts are generally bonded by the welding process. A large number of solid elements are usually required in the finite element (FE) model of a PTSP with welded joints to obtain its accurate modal parameters. Ignoring welded joints of the PTSP can save many degrees of freedom (DOFs), but significantly change its natural frequencies. This study aims to accurately determine modal parameters of a PTSP with welded joints with much fewer DOFs than those of its solid element model and to obtain its operational modal analysis results by avoiding missing its modes. Two novel methods that consider welded joints as equivalent stiffness are proposed to create beam-shell element models of the PTSP. The main step is to match stiffnesses of beam and shell elements of a welded joint with those of its solid elements. Compared with the solid element model of the PTSP, its proposed models provide almost the same levels of accuracy for natural frequencies and mode shapes for the first 20 elastic modes, while reducing DOFs by about 98% for the whole structure and 99% for each welded joint. The first 14 elastic modes of a PTSP specimen that were measured without missing any modes by synchronously capturing its two-faced vibrations through use of a three-dimensional scanning laser vibrometer (SLV) and a mirror experimentally validate its beam-shell element models created by the two proposed methods.

References

References
1.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
. 10.1016/S0079-6425(00)00016-5
2.
Wadley
,
H. N.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2003
, “
Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures
,”
Compos. Sci. Technol.
,
63
(
16
), pp.
2331
2343
. 10.1016/S0266-3538(03)00266-5
3.
Ma
,
Y.
,
Yan
,
H.
, and
Xie
,
G.
,
2020
, “
Flow and Thermal Performance of Sandwich Panels With Plate Fins or/and Pyramidal Lattice
,”
Appl. Therm. Eng.
,
164
(
1
), p.
114468
. 10.1016/j.applthermaleng.2019.114468
4.
Smardzewski
,
J.
,
2019
, “
Wooden Sandwich Panels With Prismatic Core-Energy Absorbing Capabilities
,”
Compos. Struct.
,
230
(
12
), p.
111535
. 10.1016/j.compstruct.2019.111535
5.
Queheillalt
,
D. T.
,
Murty
,
Y.
, and
Wadley
,
H. N.
,
2008
, “
Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure
,”
Scr. Mater.
,
58
(
1
), pp.
76
79
. 10.1016/j.scriptamat.2007.08.041
6.
Wang
,
Z.
,
Luan
,
C.
,
Liao
,
G.
,
Yao
,
X.
, and
Fu
,
J.
,
2019
, “
Mechanical and Self-Monitoring Behaviors of 3D Printing Smart Continuous Carbon Fiber-Thermoplastic Lattice Truss Sandwich Structure
,”
Compos. Part B: Eng.
,
176
(
11
), p.
107215
. 10.1016/j.compositesb.2019.107215
7.
Azzouz
,
L.
,
Chen
,
Y.
,
Zarrelli
,
M.
,
Pearce
,
J. M.
,
Mitchell
,
L.
,
Ren
,
G.
, and
Grasso
,
M.
,
2019
, “
Mechanical Properties of 3-D Printed Truss-Like Lattice Biopolymer Non-Stochastic Structures for Sandwich Panels With Natural Fibre Composite Skins
,”
Compos. Struct.
,
213
(
4
), pp.
220
230
. 10.1016/j.compstruct.2019.01.103
8.
Feng
,
L. J.
,
Xiong
,
J.
,
Yang
,
L. H.
,
Yu
,
G. C.
,
Yang
,
W.
, and
Wu
,
L. Z.
,
2017
, “
Shear and Bending Performance of New Type Enhanced Lattice Truss Structures
,”
Int. J. Mech. Sci.
,
134
(
12
), pp.
589
598
. 10.1016/j.ijmecsci.2017.10.045
9.
Yang
,
W.
,
Xiong
,
J.
,
Feng
,
L. J.
,
Pei
,
C.
, and
Wu
,
L. Z.
,
2020
, “
Fabrication and Mechanical Properties of Three-Dimensional Enhanced Lattice Truss Sandwich Structures
,”
J. Sandwich Struct. Mater.
,
22
(
5
), pp.
1594
1611
. 10.1177/1099636218789602
10.
Yang
,
J.
,
Xiong
,
J.
,
Ma
,
L.
,
Wang
,
B.
,
Zhang
,
G.
, and
Wu
,
L.
,
2013
, “
Vibration and Damping Characteristics of Hybrid Carbon Fiber Composite Pyramidal Truss Sandwich Panels With Viscoelastic Layers
,”
Compos. Struct.
,
106
(
12
), pp.
570
580
. 10.1016/j.compstruct.2013.07.015
11.
Li
,
S.
,
Yang
,
J. S.
,
Wu
,
L. Z.
,
Yu
,
G. C.
, and
Feng
,
L. J.
,
2019
, “
Vibration Behavior of Metallic Sandwich Panels With Hourglass Truss Cores
,”
Marine Struct.
,
63
(
1
), pp.
84
98
. 10.1016/j.marstruc.2018.09.004
12.
Lu
,
L.
,
Song
,
H.
,
Yuan
,
W.
, and
Huang
,
C.
,
2017
, “
Baseline-Free Damage Identification of Metallic Sandwich Panels With Truss Core Based on Vibration Characteristics
,”
Struct. Health. Monit.
,
16
(
1
), pp.
24
38
. 10.1177/1475921716660055
13.
Yuan
,
W.
,
Song
,
H.
,
Lu
,
L.
, and
Huang
,
C.
,
2016
, “
Effect of Local Damages on the Buckling Behaviour of Pyramidal Truss Core Sandwich Panels
,”
Compos. Struct.
,
149
(
8
), pp.
271
278
. 10.1016/j.compstruct.2016.04.031
14.
Syam
,
W. P.
,
Wu
,
J.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2018
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
,
52
(
4
), pp.
494
506
. 10.1016/j.precisioneng.2017.09.010
15.
Yang
,
J. S.
,
Ma
,
L.
,
Chaves-Vargas
,
M.
,
Huang
,
T. X.
,
Schröder
,
K. U.
,
Schmidt
,
R.
, and
Wu
,
L. Z.
,
2017
, “
Influence of Manufacturing Defects on Modal Properties of Composite Pyramidal Truss-Like Core Sandwich Cylindrical Panels
,”
Compos. Sci. Technol.
,
147
(
7
), pp.
89
99
. 10.1016/j.compscitech.2017.05.007
16.
Radaj
,
D.
,
Sonsino
,
C. M.
, and
Fricke
,
W.
,
2006
,
Fatigue Assessment of Welded Joints by Local Approaches
, 2nd ed.,
Woodhead Publishing
,
Cambridge, UK
.
17.
Wang
,
Y. J.
,
Zhang
,
Z. J.
,
Xue
,
X. M.
, and
Zhang
,
L.
,
2019
, “
Free Vibration Analysis of Composite Sandwich Panels With Hierarchical Honeycomb Sandwich Core
,”
Thin-Walled Struct.
,
145
(
12
), p.
106425
. 10.1016/j.tws.2019.106425
18.
Zhang
,
Z. J.
,
Zhang
,
Q. C.
,
Li
,
F. C.
,
Yang
,
J. W.
,
Liu
,
J. W.
,
Liu
,
Z. Y.
, and
Jin
,
F.
,
2019
, “
Modal Characteristics of Micro-Perforated Sandwich Beams With Square Honeycomb-Corrugation Hybrid Cores: A Mixed Experimental-Numerical Study
,”
Thin-Walled Struct.
,
137
(
4
), pp.
185
196
. 10.1016/j.tws.2019.01.004
19.
Burlayenko
,
V. N.
, and
Sadowski
,
T.
,
2009
, “
Analysis of Structural Performance of Sandwich Plates With Foam-Filled Aluminum Hexagonal Honeycomb Core
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
658
662
. 10.1016/j.commatsci.2008.08.018
20.
Yin
,
S.
,
Chen
,
H.
,
Wu
,
Y.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Introducing Composite Lattice Core Sandwich Structure as an Alternative Proposal for Engine Hood
,”
Compos. Struct.
,
201
(
10
), pp.
131
140
. 10.1016/j.compstruct.2018.06.038
21.
Qi
,
G.
,
Ma
,
L.
, and
Wang
,
S. Y.
,
2019
, “
Modeling and Reliability of Insert in Composite Pyramidal Lattice Truss Core Sandwich Panels
,”
Compos. Struct.
,
221
(
8
), p.
110888
. 10.1016/j.compstruct.2019.04.060
22.
Zhou
,
J.
, and
Li
,
Z.
,
2019
, “
Damage Detection Based on Vibration for Composite Sandwich Panels With Truss Core
,”
Compos. Struct.
,
229
(
12
), p.
111376
. 10.1016/j.compstruct.2019.111376
23.
Xu
,
S.
, and
Deng
,
X.
,
2004
, “
An Evaluation of Simplified Finite Element Models for Spot-Welded Joints
,”
Finite Elements Analysis Des.
,
40
(
9–10
), pp.
1175
1194
. 10.1016/j.finel.2003.08.006
24.
ABAQUS
,
2011
,
ABAQUS Standard User's Manuals
, Version 6.11,
Hibbitt, Karlsson and Sorensen, Inc.
,
Pawtucket, RI
.
25.
Brown
,
A. M.
, and
Seugling
,
R. M.
,
2004
, “
Using Plate Finite Elements for Modeling Fillets in Global Response Analysis
,”
Finite Elem. Anal. Des.
,
40
(
13–14
), pp.
1963
1975
. 10.1016/j.finel.2004.01.008
26.
He
,
K.
, and
Zhu
,
W. D.
,
2009
, “
Modeling of Fillets in Thin-Walled Beams Using Shell/Plate and Beam Finite Elements
,”
ASME J. Vib. Acoust.
,
131
(
5
), p.
051002
. 10.1115/1.3142879
27.
He
,
K.
, and
Zhu
,
W. D.
,
2011
, “
Finite Element Modeling of Structures With L-Shaped Beams and Bolted Joints
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011011
. 10.1115/1.4001840
28.
Kim
,
J. S.
,
Xu
,
Y. F.
, and
Zhu
,
W. D.
,
2020
, “
Linear Finite Element Modeling of Joined Structures With Riveted Connections
,”
ASME J. Vib. Acoust.
,
142
(
2
), p.
021008
. 10.1115/1.4045582
29.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2001
, “
Collapse of Truss Core Sandwich Beams in 3-Point Bending
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6275
6305
. 10.1016/S0020-7683(01)00103-2
30.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice, and Application
, 2nd ed.,
Research Studies Press Ltd.
,
Baldock, Hertfordshire, UK
.
You do not currently have access to this content.