Abstract

Metastructures made of spring-mass resonators present a bandgap at the natural frequency of the resonator. This rule cannot be generalized for more complex resonators. This work analyzes the case of a metastructure composed of a periodic arrangement of vertical beams rigidly joined to a horizontal beam. The vertical beams work as resonators, and their natural frequencies play a strong role on the band structure of the whole system, however, different than the case with spring-mass resonators. Since this metastructure can be considered a lattice, Bloch’s theorem is applied to the unit cell and a numerical procedure based on the finite element method permits to obtain the dispersion curves. Illustrative results show the influence of the natural frequencies of the horizontal and vertical beams on the band structure.

References

References
1.
Phani
,
A.
,
Woodhouse
,
J.
, and
Fleck
,
N.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
. 10.1121/1.2179748
2.
Serrano
,
Ó.
,
Zaera
,
R.
, and
Fernández-Sáez
,
J.
,
2018
, “
Band Structure Analysis of a Thin Plate With Periodic Arrangements of Slender Beams
,”
J. Sound Vib.
,
420
, pp.
330
345
. 10.1016/j.jsv.2017.11.016
3.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Flexural Wave Band Gaps in Locally Resonant Thin Plates With Periodically Attached Spring–Mass Resonators
,”
J. Phys. D: Appl. Phys.
,
45
(
19
), p.
195401
. 10.1088/0022-3727/45/19/195401
4.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
. 10.1063/1.4963648
5.
Sugino
,
C.
,
Xia
,
Y.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2017
, “
A General Theory for Bandgap Estimation in Locally Resonant Metastructures
,”
J. Sound Vib.
,
406
, pp.
104
123
. 10.1016/j.jsv.2017.06.004
6.
Wu
,
T.-T.
,
Huang
,
Z.-G.
,
Tsai
,
T.-C.
, and
Wu
,
T.-C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
(
11
), p.
111902
. 10.1063/1.2970992
7.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Larabi
,
H.
,
Vasseur
,
J.
, and
Hladky-Hennion
,
A.
,
2008
, “
Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate
,”
Phys. Rev. B
,
78
(
10
), p.
104105
. 10.1103/PhysRevB.78.104105
8.
Xiao
,
Y.
,
Wen
,
J.
,
Huang
,
L.
, and
Wen
,
X.
,
2013
, “
Analysis and Experimental Realization of Locally Resonant Phononic Plates Carrying a Periodic Array of Beam-Like Resonators
,”
J. Phys. D: Appl. Phys.
,
47
(
4
), p.
045307
. 10.1088/0022-3727/47/4/045307
9.
Qureshi
,
A.
,
Li
,
B.
, and
Tan
,
K.
,
2016
, “
Numerical Investigation of Band Gaps in 3D Printed Cantilever-in-Mass Metamaterials
,”
Sci. Rep.
,
6
(
1
), p.
28314
. 10.1038/srep28314
10.
Torrent
,
D.
,
Mayou
,
D.
, and
Sanchez-Dehesa
,
J.
,
2013
, “
Elastic Analog of Graphene: Dirac Cones and Edge States for Flexural Waves in Thin Plates
,”
Phys. Rev. B
,
87
(
11
), p.
115143
. 10.1103/PhysRevB.87.115143
11.
Hsu
,
J.-C.
,
2011
, “
Local Resonances-Induced Low-Frequency Band Gaps in Two-Dimensional Phononic Crystal Slabs With Periodic Stepped Resonators
,”
J. Phys. D: Appl. Phys.
,
44
(
5
), p.
055401
. 10.1088/0022-3727/44/5/055401
12.
Huang
,
H.-H.
,
Lin
,
C.-K.
, and
Tan
,
K.-T.
,
2016
, “
Attenuation of Transverse Waves by Using a Metamaterial Beam With Lateral Local Resonators
,”
Smart Mater. Struct.
,
25
(
8
), p.
085027
. 10.1088/0964-1726/25/8/085027
13.
Xiao
,
Y.
,
Wen
,
J.
,
Wang
,
G.
, and
Wen
,
X.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041006
. 10.1115/1.4024214
14.
Bauchau
,
O. A.
, and
Craig
,
J. I.
,
2009
,
Euler-Bernoulli Beam Theory
,
Springer
,
Dordrecht
.
You do not currently have access to this content.