Abstract

Nonlinear energy sinks (NESs) have received widespread attention due to their broadband vibration absorption ability. This article investigates the effect of the NES device on the nonlinear dynamic characteristics of the cable. First, the mechanical model of the inclined cable coupled NES was established. The dynamic equation of the system was obtained by applying Hamilton's principle. Then, the partial differential control equations of the system are discretized by the Galerkin truncation method. The incremental harmonic balance (IHB) method is applied to obtain the steady-state response of the nonlinear vibration of the system. Finally, the effects of the relevant parameters of the NES device on the nonlinear dynamical characteristics of the system are analyzed. In addition, the transient energy transfer within the system is analyzed. The results show that the NES can effectively reduce the displacement response of cable under harmonic loading. The variation of the relevant parameters of the NES device has a significant effect on the dynamic behavior of the cable.

References

1.
Berlioz
,
A.
, and
Lamarque
,
C. H.
,
2005
, “
A Non-linear Model for the Dynamics of an Inclined Cable
,”
J. Sound Vib.
,
279
(
3–5
), pp.
619
639
.
2.
Wang
,
L.
, and
Zhao
,
Y.
,
2006
, “
Nonlinear Interactions and Chaotic Dynamics of Suspended Cables With Three-to-One Internal Resonances
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7800
7819
.
3.
Srinil
,
N.
,
Rega
,
G.
, and
Chucheepsakul
,
S.
,
2007
, “
Two-to-One Resonant Multi-modal Dynamics of Horizontal/Inclined Cables. Part I: Theoretical Formulation and Model Validation
,”
Nonlinear Dyn.
,
48
(
3
), pp.
231
252
.
4.
Rega
,
G.
,
2004
, “
Nonlinear Vibrations of Suspended Cables—Part I: Modeling and Analysis
,”
ASME Appl. Mech. Rev.
,
57
(
6
), pp.
443
478
.
5.
Ren
,
W. X.
,
Liu
,
H. L.
, and
Chen
,
G.
,
2008
, “
Determination of Cable Tensions Based on Frequency Differences
,”
Eng. Comput.
,
25
(
2
), pp.
172
189
.
6.
Kamel
,
M. M.
, and
Hamed
,
Y. S.
,
2010
, “
Nonlinear Analysis of an Elastic Cable Under Harmonic Excitation
,”
Acta Mech.
,
214
(
3–4
), pp.
315
325
.
7.
Kang
,
H. J.
,
Zhao
,
Y. Y.
, and
Zhu
,
H. P.
,
2015
, “
Linear and Nonlinear Dynamics of Suspended Cable Considering Bending Stiffness
,”
J. Vib. Control
,
21
(
8
), pp.
1487
1505
.
8.
Macdonald
,
J. H. G.
,
Dietz
,
M. S.
,
Neild
,
S. A.
,
Gonzalez-Buelga
,
A.
,
Crewe
,
A. J.
, and
Wagg
,
D. J.
,
2010
, “
Generalised Modal Stability of Inclined Cables Subjected to Support Excitations
,”
J. Sound Vib.
,
329
(
21
), pp.
4515
4533
.
9.
Zhao
,
Y.
,
Guo
,
Z.
,
Huang
,
C.
,
Chen
,
L.
, and
Li
,
S.
,
2018
, “
Analytical Solutions for Planar Simultaneous Resonances of Suspended Cables Involving Two External Periodic Excitations
,”
Acta Mech.
,
229
(
11
), pp.
4393
4411
.
10.
Wang
,
L.
, and
Zhao
,
Y.
,
2007
, “
Non-Linear Planar Dynamics of Suspended Cables Investigated by the Continuation Technique
,”
Eng. Struct.
,
29
(
6
), pp.
1135
1144
.
11.
Fei
,
H.
,
Zichen
,
D.
, and
Danhui
,
D.
,
2020
, “
A Novel Method for Dynamic Analysis of Complex Multi-segment Cable Systems
,”
Mech. Syst. Signal Process.
,
142
, p.
106780
.
12.
Xu
,
K.
,
Hua
,
X.
,
Lacarbonara
,
W.
,
Huang
,
Z.
, and
Chen
,
Z.
,
2021
, “
Exploration of the Nonlinear Effect of Pendulum Tuned Mass Dampers on Vibration Control
,”
J. Eng. Mech.
,
147
(
8
), p.
04021047
.
13.
Wu
,
W. J.
, and
Cai
,
C. S.
,
2007
, “
Theoretical Exploration of a Taut Cable and a TMD System
,”
Eng. Struct.
,
29
(
6
), pp.
962
972
.
14.
Parseh
,
M.
,
Dardel
,
M.
, and
Ghasemi
,
M. H.
,
2015
, “
Performance Comparison of Nonlinear Energy Sink and Linear Tuned Mass Damper in Steady-State Dynamics of a Linear Beam
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1981
2002
.
15.
Zhou
,
J.
,
Xu
,
M.
, and
Xia
,
W.
,
2020
, “
Passive Suppression of Panel Flutter Using a Nonlinear Energy Sink
,”
Int. J. Aerosp. Eng.
,
2020
, pp.
1
14
.
16.
Ding
,
H.
, and
Chen
,
L. Q.
,
2020
, “
Designs, Analysis, and Applications of Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
100
(
4
), pp.
3061
3107
.
17.
Saeed
,
A. S.
,
Abdul Nasar
,
R.
, and
AL-Shudeifat
,
M. A.
,
2023
, “
A Review on Nonlinear Energy Sinks: Designs, Analysis and Applications of Impact and Rotary Types
,”
Nonlinear Dyn.
,
111
(
1
), pp.
1
37
.
18.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
.
19.
Panagopoulos
,
P. N.
,
Vakakis
,
A. F.
, and
Tsakirtzis
,
S.
,
2004
, “
Transient Resonant Interactions of Finite Linear Chains With Essentially Nonlinear end Attachments Leading to Passive Energy Pumping
,”
Int. J. Solids Struct.
,
41
(
22–23
), pp.
6505
6528
.
20.
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2005
, “
Energy Pumping With Various Nonlinear Structures: Numerical Evidences
,”
Nonlinear Dyn.
,
40
(
3
), pp.
281
307
.
21.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2007
, “
Steady-State Dynamics of a Linear Structure Weakly Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
167
179
.
22.
Chen
,
J. E.
,
He
,
W.
,
Zhang
,
W.
,
Yao
,
M. H.
,
Liu
,
J.
, and
Sun
,
M.
,
2018
, “
Vibration Suppression and Higher Branch Responses of Beam With Parallel Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
91
(
2
), pp.
885
904
.
23.
Sun
,
Y.-H.
,
Zhang
,
Y.-W.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2018
, “
Nonlinear Energy Sink for a Flywheel System Vibration Reduction
,”
J. Sound Vib.
,
429
, pp.
305
324
.
24.
Nasrabadi
,
M.
,
Sevbitov
,
A. V.
,
Maleki
,
V. A.
,
Akbar
,
N.
, and
Javanshir
,
I.
,
2022
, “
Passive Fluid-Induced Vibration Control of Viscoelastic Cylinder Using Nonlinear Energy Sink
,”
Mar. Struct.
,
81
, p.
103116
.
25.
Kremer
,
D.
, and
Liu
,
K.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
.
26.
Kremer
,
D.
, and
Liu
,
K.
,
2017
, “
A Nonlinear Energy Sink With an Energy Harvester: Harmonically Forced Responses
,”
J. Sound Vib.
,
410
, pp.
287
302
.
27.
Li
,
X.
,
Zhang
,
Y.-W.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2019
, “
Dynamics and Evaluation of a Nonlinear Energy Sink Integrated by a Piezoelectric Energy Harvester Under a Harmonic Excitation
,”
J. Vib. Control
,
25
(
4
), pp.
851
867
.
28.
Blanchard
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2020
, “
Vortex-Induced Vibration of a Linearly Sprung Cylinder With an Internal Rotational Nonlinear Energy Sink in Turbulent Flow
,”
Nonlinear Dyn.
,
99
(
1
), pp.
593
609
.
29.
Kani
,
M.
,
Khadem
,
S. E.
,
Pashaei
,
M. H.
, and
Dardel
,
M.
,
2016
, “
Vibration Control of a Nonlinear Beam With a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
83
(
1
), pp.
1
22
.
30.
Li
,
H.
,
Li
,
A.
, and
Kong
,
X.
,
2021
, “
Design Criteria of Bistable Nonlinear Energy Sink in Steady-State Dynamics of Beams and Plates
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1475
1497
.
31.
Gaidai
,
O.
,
Gu
,
Y.
,
Xing
,
Y.
,
Wang
,
J.
, and
Yurchenko
,
D.
,
2023
, “
Numerical Optimisation of a Classical Stochastic System for Targeted Energy Transfer
,”
Theoret. Appl. Mech. Lett.
,
13
(
3
), p.
100422
.
32.
Liu
,
E.-G.
,
Li
,
M.
, and
Ding
,
H.
,
2025
, “
Influence of Additional Mass and Connection of Nonlinear Energy Sinks on Vibration Reduction Performance
,”
Mech. Syst. Signal Process.
,
224
, p.
112123
.
33.
Karličić
,
D.
,
Cajić
,
M.
,
Paunović
,
S.
, and
Adhikari
,
S.
,
2021
, “
Periodic Response of a Nonlinear Axially Moving Beam With a Nonlinear Energy Sink and Piezoelectric Attachment
,”
Int. J. Mech. Sci.
,
195
, p.
106230
.
34.
Zhou
,
P.
, and
Li
,
H.
,
2016
, “
Modeling and Control Performance of a Negative Stiffness Damper for Suppressing Stay Cable Vibrations
,”
Struct. Control Health Monitor.
,
23
(
4
), pp.
764
782
.
35.
Lu
,
L.
,
Duan
,
Y.-F.
,
Spencer
,
B. F.
,
Lu
,
X.
, and
Zhou
,
Y.
,
2017
, “
Inertial Mass Damper for Mitigating Cable Vibration
,”
Struct. Control Health Monitor.
,
24
(
10
), p.
e1986
.
36.
Johnson
,
E. A.
,
Christenson
,
R. E.
, and
Spencer
,
B. F.
,
2003
, “
Semiactive Damping of Cables With Sag
,”
Comput. Aided Civil Infrastruct. Eng.
,
18
(
2
), pp.
132
146
.
37.
Johnson
,
E. A.
,
Baker
,
G. A.
,
Spencer
,
B. F.
, and
Fujino
,
Y.
,
2007
, “
Semiactive Damping of Stay Cables
,”
J. Eng. Mech.
,
133
(
1
), pp.
1
11
.
38.
Chen
,
S. H.
,
Cheung
,
Y. K.
, and
Xing
,
H. X.
,
2001
, “
Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
26
(
1
), pp.
87
104
.
39.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.
40.
Wang
,
Y.
,
Kang
,
H.
,
Cong
,
Y.
,
Guo
,
T.
, and
Zhu
,
W.
,
2023
, “
Vibration Suppression of a Cable Under Harmonic Excitation by a Nonlinear Energy Sink
,”
Commun. Nonlinear Sci. Numer. Simul.
,
117
, p.
106988
.
41.
Wu
,
Z.
,
Zhang
,
Y.
,
Yao
,
G.
, and
Yang
,
Z.
,
2019
, “
Nonlinear Primary and Super-Harmonic Resonances of Functionally Graded Carbon Nanotube Reinforced Composite Beams
,”
Int. J. Mech. Sci.
,
153
, pp.
321
340
.
You do not currently have access to this content.