Abstract

With the proliferation of Internet of Things (IoT) devices, the demand for sustainable, wireless power sources has gained significant interest. Electrostatic energy harvesters (e-VEHs) present a promising sustainable alternative to traditional battery technology due to their compatibility with silicon-based technologies and potential for on-chip integration. However, existing e-VEHs exhibit modest power levels, necessitating further enhancement. While various optimization techniques have been explored, a comprehensive understanding of the fundamental nonlinear dynamics of these devices remains lacking. This study addresses this gap by conducting a theoretical investigation into the nonlinear behavior of mechanical oscillators coupled with electrical circuits, the basic building blocks of e-VEHs. Special attention is given to bifurcation phenomena, particularly at low frequencies, an excitation range where most e-VEHs operate poorly. This, however, could be beneficial as it was found to trigger frequency-up conversion. Additionally, analysis of dynamic regions provides insight into conditions necessary for maximizing output power, highlighting the importance of balancing nonlinear forces.

References

1.
Oxaal
,
J.
,
Hella
,
M.
, and
Borca-Tasciuc
,
D.-A.
,
2016
, “
Electrostatic MEMS Vibration Energy Harvester for HVAC Applications With Impact-Based Frequency Up-Conversion
,”
J. Micromech. Microeng.
,
26
(
12
), p.
124012
.
2.
Dong
,
S.
,
Duan
,
S.
,
Yang
,
Q.
,
Zhang
,
J.
,
Li
,
G.
, and
Tao
,
R.
,
2017
, “
MEMS-Based Smart Gas Metering for Internet of Things
,”
IEEE Internet Things J.
,
4
(
5
), pp.
1296
1303
.
3.
Bishop
,
D. J.
,
Giles
,
C. R.
, and
Austin
,
G. P.
,
2002
, “
The Lucent LambdaRouter: MEMS Technology of the Future Here Today
,”
IEEE Commun. Mag.
,
40
(
3
), pp.
75
79
.
4.
Halvorsen
,
E.
,
2008
, “
Energy Harvesters Driven by Broadband Random Vibrations
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1061
1071
.
5.
Li
,
J.
,
2021
, “
Electrostatic MEMS Energy Harvesting for Sensor Powering
,”
Ph.D. thesis
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
6.
Gubbi
,
J.
,
Buyya
,
R.
,
Marusic
,
S.
, and
Palaniswami
,
M.
,
2013
, “
Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions
,”
Future Gener. Comput. Syst.
,
29
(
7
), pp.
1645
1660
.
7.
Chiu
,
Y.
, and
Lee
,
Y. C.
,
2013
, “
Flat and Robust Out-of-Plane Vibrational Electret Energy Harvester
,”
J. Microelectromech. Syst.
,
23
(
015012
).
8.
Kempitiya
,
A.
,
Borca-Tasciuc
,
D. A.
, and
Hella
,
M. M.
,
2012
, “
Low-Power ASIC for Microwatt Electrostatic Energy Harvesters
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5639
5647
.
9.
Basset
,
P.
,
Galayko
,
D.
,
Paracha
,
A. M.
,
Marty
,
F.
,
Dudka
,
A.
, and
Bourouina
,
T.
,
2009
, “
A Batch-Fabricated and Electret-Free Silicon Electrostatic Vibration Energy Harvester
,”
J. Microelectromech. Syst.
,
19
(
11
).
10.
Basset
,
P.
,
Blokhina
,
E.
, and
Galayko
,
D.
,
2016
,
Electrostatic Kinetic Energy Harvesting
,
John Wiley and Sons
,
Hoboken, NJ
.
11.
Li
,
J.
,
Tong
,
X.
,
Oxaal
,
J.
,
Liu
,
Z.
,
Hella
,
M.
, and
Borca-Tasciuc
,
D. A.
,
2019
, “
Investigation of Parallel-Connected MEMS Electrostatic Energy Harvesters for Enhancing Output Power Over a Wide Frequency Range
,”
J. Microelectromech. Syst.
,
29
(
9
).
12.
Li
,
M.
,
Luo
,
A.
,
Luo
,
W.
, and
Wang
,
F.
,
2022
, “
Recent Progress on Mechanical Optimization of MEMS Electret-Based Electrostatic Vibration Energy Harvesters
,”
J. Microelectromech. Syst.
,
31
(
5
), pp.
726
740
.
13.
Li
,
J.
,
Xu
,
C.
,
Tichy
,
J.
, and
Borca-Tasciuc
,
D. A.
,
2018
, “
A 1D Model for Design and Predicting Dynamic Behavior of Out-of-Plane MEMS
,”
J. Microelectromech. Syst.
,
28
(
8
).
14.
Li
,
J.
,
Tichy
,
J.
, and
Borca-Tasciuc
,
D. A.
,
2020
, “
A Predictive Model for Electrostatic Energy Harvesters With Impact-Based Frequency Up-Conversion
,”
J. Microelectromech. Syst.
,
30
(
12
).
15.
Solokov
,
A.
,
Galayko
,
D.
,
Basset
,
P.
, and
Blokhina
,
E.
,
2022
, “
On the Frequency Up-Conversion Mechanism Due to a Soft Stopper by the Example of an Electrostatic Kinetic Energy Harvester.
J. Intell. Mater. Syst. Struct.
,
34
(
6
).
16.
Li
,
J.
,
Ouro-Koura
,
H.
,
Arnow
,
H.
,
Nowbahari
,
A.
,
Galarza
,
M.
,
Obispo
,
M.
,
Tong
,
X.
, et al
,
2023
, “
Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Up-Conversion
,”
Sensors
,
23
(
11
).
17.
Abedini
,
A.
, and
Wang
,
F.
,
2019
, “
Energy Harvesting of a Frequency Up-Conversion Piezoelectric Harvester With Controlled Impact
,”
Eur. Phys. J. Spec. Top.
,
6
(
228
), pp.
1459
1474
.
18.
Guo
,
X.
,
Zhang
,
Y.
,
Fan
,
K.
,
Lee
,
C.
, and
Wang
,
F.
,
2020
, “
A Comprehensive Study of Non-linear Air Damping and Pull-In Effects on the Electrostatic Energy Harvesters
,”
Energy Convers. Manage.
,
203
.
19.
Lensvelt
,
R.
,
Fey
,
R. H. B.
,
Mestrom
,
R. M. C.
, and
Nijmeijer
,
H.
,
2020
, “
Design and Numerical Analysis of an Electrostatic Energy Harvester With Impact for Frequency Up-Conversion
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
5
), p.
051005
.
20.
Cai
,
W.
, and
Harne
,
R. L.
,
2020
, “
Characterization of Challenges in Asymmetric Nonlinear Vibration Energy Harvesters Subjected to Realistic Excitation
,”
J. Sound Vib.
,
482
.
21.
Atmeh
,
M.
, and
Ibrahim
,
A.
,
2021
, “
Modeling of Piezoelectric Vibration Energy Harvesting From Low-Frequency Using Frequency Up-Conversion
,”
Smart Mater. Adapt. Struct. Intell. Syst.
,
85499
.
22.
Maamer
,
B.
,
Jaziri
,
N.
,
Said
,
M. H.
, and
Tounsi
,
F.
,
2023
, “
High-Displacement Electret-Based Energy Harvesting System for Powering Leadless Pacemakers From Heartbeats
,”
Arch. Electr. Eng.
,
72
(
1
), pp.
229
238
.
23.
Jensen
,
T. W.
,
Insinga
,
A. R.
,
Ehlers
,
J. C.
, and
Bjørk
,
R.
,
2021
, “
The Full Phase Space Dynamics of a Magnetically Levitated Electromagnetic Vibration Harvester
,”
Sci. Rep.
,
11
(
1
), p.
16607
.
24.
Vullers
,
R.
,
van Schaijk
,
R.
,
Doms
,
I.
,
Van Hoof
,
C.
, and
Mertens
,
R.
,
2009
, “
Micropower Energy Harvesting
,”
Solid State Electron.
,
53
(
7
), pp.
684
693
.
25.
Tian
,
Y.
,
Miles
,
R. N.
, and
Towfighian
,
S.
,
2021
, “
Employing Boundary Element Approach With Genetic Algorithm to Increase Travel Range of Repulsive Actuators
,”
IEEE Sens. J.
,
22
(
17
), pp.
16828
16836
.
26.
Nayfeh
,
A.
, and
Younis
,
M.
,
2003
, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
,
14
(
170
).
27.
Lu
,
Y.
,
Juillard
,
J.
,
Cottone
,
F.
,
Galayko
,
D.
, and
Basset
,
P.
,
2018
, “
An Impact-Coupled MEMS Electrostatic Kinetic Energy Harvester and Its Predictive Model Taking Nonlinear Air Damping Effect Into Account
,”
J. Microelectromech. Syst.
,
27
(
6
), pp.
1041
1053
.
28.
Lu
,
Y.
,
Marty
,
F.
,
Galayko
,
D.
,
Laheurte
,
J.M.
, and
Basset
,
P.
,
2018
, “
A Power Supply Module for Autonomous Portable Electronics: Ultralow-Frequency MEMS Electrostatic Kinetic Energy Harvester With a Comb Structure Reducing Air Damping
,”
J. Microsyst. Nanoeng.
,
4
(
28
).
You do not currently have access to this content.