Abstract

The design of mechanical inerter-based vibration absorbers faces major challenges, particularly in accurately measuring the relative acceleration between the structure and the absorber. This article presents a novel solution to this issue using active control techniques. By utilizing a voice coil as a sensor, the relative velocity is captured and differentiated to estimate the relative acceleration. Two additional voice coils act as actuators, creating the inertance effect. The close placement of these actuators and sensors enables collocated feedback, ensuring unconditional stability. Experimental and simulation studies validate this innovative smart system through a ground-based absorber, showcasing two scenarios: (1) pure inertance feedback and (2) feedback laws that combine stiffness, damping, and inertance to boost performance. The results confirm superior stability compared to conventional methods, underlining the effectiveness of this smart device in vibration control.

References

1.
Smith
,
M.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Automat. Contr.
,
47
(
10
), pp.
1648
1662
.
2.
Chen
,
M. Z.
,
Papageorgiou
,
C.
,
Scheibe
,
F.
,
Wang
,
F.-C.
, and
Smith
,
M. C.
,
2009
, “
The Missing Mechanical Circuit Element
,”
IEEE Circuits Syst. Mag.
,
9
(
1
), pp.
10
26
.
3.
Smith
,
M.
, and
Wang
,
F.-C.
,
2003
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)
,
Maui, HI
,
Dec. 9–12
, Vol.
3
, pp.
2258
2263
.
4.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.
5.
Liu
,
X.
,
Jiang
,
J. Z.
,
Titurus
,
B.
, and
Harrison
,
A.
,
2018
, “
Model Identification Methodology for Fluid-Based Inerters
,”
Mech. Syst. Signal Process.
,
106
, pp.
479
494
.
6.
Lazar
,
I. F.
,
Neild
,
S.
, and
Wagg
,
D.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.
7.
Hu
,
Y.
,
Chen
,
M. Z.
,
Shu
,
Z.
, and
Huang
,
L.
,
2015
, “
Analysis and Optimisation for Inerter-Based Isolators via Fixed-Point Theory and Algebraic Solution
,”
J. Sound Vib.
,
346
, pp.
17
36
.
8.
Chen
,
M. Z.
,
Hu
,
Y.
,
Huang
,
L.
, and
Chen
,
G.
,
2014
, “
Influence of Inerter on Natural Frequencies of Vibration Systems
,”
J. Sound Vib.
,
333
(
7
), pp.
1874
1887
.
9.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.
10.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.
11.
Zhou
,
S.
,
Jean-Mistral
,
C.
, and
Chesne
,
S.
,
2019
, “
Influence of Inerters on the Vibration Control Effect of Series Double Tuned Mass Dampers: Two Layouts and Analytical Study
,”
Struct. Control Health Monitor.
,
26
(
10
), p.
e2414
.
12.
Zhou
,
S.
,
Jean-Mistral
,
C.
, and
Chesne
,
S.
,
2019
, “
Optimal Design of an Inerter-Based Dynamic Vibration Absorber Connected to Ground
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051017
.
13.
Tong
,
S.
,
Zeng
,
J.
,
Miao
,
Z.
, and
Chen
,
G.
,
2025
, “
Parameter Optimization of Tuned Inerter Damper for Vibration Suppression in Structures With Damping
,”
J. Sound Vib.
,
597
, p.
118827
.
14.
Song
,
J.
,
Fang
,
X.
,
Bi
,
K.
,
Ding
,
H.
, and
Qin
,
H.
,
2025
, “
Tuned Inerter Damper for Adjacent Bridges Vibration Control Considering Nonlinearities
,”
Eng. Struct.
,
325
, p.
119504
.
15.
Wang
,
B.
,
Xu
,
F.
, and
Zhang
,
M.
,
2025
, “
Experimental and Numerical Study of a Novel Low-Frequency Tuned Mass Damper-Inerter
,”
Eng. Struct.
,
331
, p.
119980
.
16.
Shen
,
W.
,
Long
,
Z.
,
Cai
,
L.
,
Niyitangamahoro
,
A.
,
Li
,
H. Z. Y.
, and
Qiu
,
C.
,
2022
, “
An Inerter-Based Electromagnetic Damper for Civil Structures: Modeling, Testing, and Seismic Performance
,”
Mech. Syst. Signal Process.
,
173
, p.
109070
.
17.
Arandia-Krešić
,
S.
,
Turalija
,
S.
,
Alujević
,
N.
, and
Vladimir
,
N.
,
2024
, “
Active Vibration Isolation by Emulating the Inerter Through Relative Acceleration Feedback
,”
Acta Acust.
,
8
, p.
49
.
18.
Alujević
,
N.
,
Ćatipović
,
I.
,
Wolf
,
H.
, and
Vladimir
,
N.
,
2019
, “
Synthesis of the Inerter by Direct Acceleration Feedback
,”
23rd International Congress on Acoustics; Fourth EAA Euroregio 2019
,
Aachen, Germany
,
Sept. 9–13
, pp.
77
84
.
19.
Ormondroyd
,
J.
, and
Den Hartog
,
J.
,
1928
, “
The Theory of the Dynamic Vibration Absorber
,”
ASME J. Fluids Eng.
,
49
(
2
), p.
021007
.
20.
Billon
,
K.
,
Zhao
,
G.
,
Collette
,
C.
, and
Chesné
,
S.
,
2022
, “
Hybrid Mass Damper: Theoretical and Experimental Power Flow Analysis
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041003
.
21.
Rodriguez
,
J.
,
Mesny
,
L.
, and
Chesné
,
S.
,
2024
, “
Sliding Mode Control for Hybrid Mass Dampers: Experimental Analysis on Robustness
,”
J. Sound Vib.
,
575
, p.
118241
.
22.
Chesné
,
S.
,
Inquieté
,
G.
,
Cranga
,
P.
,
Legrand
,
F.
, and
Petitjean
,
B.
,
2019
, “
Innovative Hybrid Mass Damper for Dual-Loop Controller
,”
Mech. Syst. Signal Process.
,
115
, pp.
514
523
.
23.
Paknejad
,
A.
,
Zhao
,
G.
,
Chesné
,
S.
,
Deraemaeker
,
A.
, and
Collette
,
C.
,
2020
, “
Hybrid Electromagnetic Shunt Damper for Vibration Control
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021010
.
24.
Paillot
,
G.
,
Besnier
,
E.
,
Chesné
,
S.
, and
Rémond
,
D.
,
2023
, “
Experimental Validation of a New Hybrid Self-Supplied Crankshaft Torsional Vibrations Damper
,”
Mech. Syst. Signal Process.
,
182
, p.
109560
.
25.
Paillot
,
G.
,
Chesné
,
S.
, and
Rémond
,
D.
,
2023
, “
Hybrid Coupled Damper for the Mitigation of Torsional Vibrations and Rotational Irregularities in an Automotive Crankshaft: Concept and Design Subtleties
,”
Mech. Based Des. Struct. Mach.
,
51
(
6
), pp.
3242
3259
.
26.
Collette
,
C.
, and
Chesné
,
S.
,
2016
, “
Robust Hybrid Mass Damper
,”
J. Sound Vib.
,
375
, pp.
19
27
.
27.
Chesné
,
S.
, and
Collette
,
C.
,
2018
, “
Experimental Validation of Fail-Safe Hybrid Mass Damper
,”
J. Vib. Control
,
24
(
19
), pp.
4395
4406
.
28.
Slotine
,
J.-J. E.
, and
Weiping
,
L.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs (N.J.)
.
29.
Verhaegen
,
M.
,
1994
, “
Identification of the Deterministic Part of Mimo State Space Models Given in Innovations Form From Input-Output Data
,”
Automatica
,
30
(
1
), pp.
61
74
.
30.
Kendo-Nouja
,
B.
,
Baduidana
,
M.
,
Kenfack-Jiotsa
,
A.
, and
Nzengwa
,
R.
,
2024
, “
Vibration Reduction of Primary Structure Using Optimum Grounded Inerter-Based Dynamic Vibration Absorber
,”
Arch. Appl. Mech.
,
94
(
1
), pp.
137
156
.
31.
Hu
,
Y.
, and
Chen
,
M. Z.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
32.
Preumont
,
A.
,
2018
,
Vibration Control of Active Structures
, Vol.
2
,
Springer
,
Dordrecht
.
You do not currently have access to this content.