Abstract

The ability to shape a specific acoustic field is crucial for a variety of applications, especially in contactless operation, where it shows great advantages. Acoustic holography reconstructs the desired acoustic field by encoding a three-dimensional (3D) acoustic field into a two-dimensional (2D) acoustic hologram. Most conventional acoustic holography, such as 3D-printed acoustic lenses and phased arrays of transducers (PAT), has limitations in terms of dynamics and phase fidelity. To address these issues, in this article, a method is proposed that combines the high-fidelity benefits of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. An iterative unsupervised learning algorithm is also proposed to compute the desired source phase holograms and move the position of the projected holograms through the phase delay to control the output acoustic waves and obtain the desired acoustic field. Experiments show that the method outperforms previous algorithms in terms of phase fidelity and real-time performance, demonstrating the future potential of acoustic holography in the field of automated noncontact particle manipulation.

References

1.
Xu
,
S.
,
Liu
,
J.
,
Yang
,
C.
,
Wu
,
X.
, and
Xu
,
T.
,
2022
, “
A Learning-Based Stable Servo Control Strategy Using Broad Learning System Applied for Microrobotic Control
,”
IEEE Trans. Cybern.
,
52
(
12
), pp.
13727
13737
.
2.
Xu
,
T.
,
Guan
,
Y.
,
Liu
,
J.
, and
Wu
,
X.
,
2020
, “
Image-Based Visual Servoing of Helical Microswimmers for Planar Path Following
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
1
), pp.
325
333
.
3.
Chen
,
Y.
,
Chen
,
D.
,
Liang
,
S.
,
Dai
,
Y.
,
Bai
,
X.
,
Song
,
B.
,
Zhang
,
D.
,
Chen
,
H.
, and
Feng
,
L.
,
2022
, “
Recent Advances in Field-Controlled Micro-Nano Manipulations and Micro-Nano Robots
,”
Adv. Intell. Syst
,
4
(
3
).
4.
Yang
,
L.
,
Jiang
,
J.
,
Ji
,
F.
,
Li
,
Y.
,
Yung
,
K.-L.
,
Ferreira
,
A.
, and
Zhang
,
L.
,
2024
, “
Machine Learning for Micro- and Nanorobots
,”
Nat. Mach. Intell.
,
6
(
6
), pp.
605
618
.
5.
Tian
,
Z.
,
Wang
,
Z.
,
Zhang
,
P.
,
Naquin
,
T. D.
,
Mai
,
J.
,
Wu
,
Y.
,
Yang
,
S.
, et al
,
2020
, “
Generating Multifunctional Acoustic Tweezers in Petri Dishes for Contactless, Precise Manipulation of Bioparticles
,”
Sci. Adv.
,
6
(
37
).
6.
Tian
,
Z.
,
Yang
,
S.
,
Huang
,
P.-H.
,
Wang
,
Z.
,
Zhang
,
P.
,
Gu
,
Y.
,
Bachman
,
H.
,
Chen
,
C.
,
Wu
,
M.
, and
Xie
,
Y.
,
2019
, “
Wave Number–Spiral Acoustic Tweezers for Dynamic and Reconfigurable Manipulation of Particles and Cells
,”
Sci. Adv.
,
5
(
5
).
7.
André
,
A. N.
,
Lehmann
,
O.
,
Govilas
,
J.
,
Laurent
,
G. J.
,
Saadana
,
H.
,
Sandoz
,
P.
,
Gauthier
,
V.
, et al
,
2024
, “
Automating Robotic Micro-Assembly of Fluidic Chips and Single Fiber Compression Tests Based-on Θ Visual Measurement With High-Precision Fiducial Markers
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
353
366
.
8.
Zhang
,
B.
,
Zhu
,
L.
,
Pan
,
H.
, and
Cai
,
L.
,
2023
, “
Biocompatible Smart Micro/Nanorobots for Active Gastrointestinal Tract Drug Delivery
,”
Expert Opin. Drug Deliv.
,
20
(
10
), pp.
1427
1441
.
9.
Wang
,
J.
,
Dong
,
Y.
,
Ma
,
P.
,
Wang
,
Y.
,
Zhang
,
F.
,
Cai
,
B.
,
Chen
,
P.
, and
Liu
,
B. F.
,
2022
, “
Intelligent Micro-/Nanorobots for Cancer Theragnostic
,”
Adv. Mater.
,
34
(
52
).
10.
Yang
,
Y.
,
Ren
,
Y.-X.
,
Chen
,
M.
,
Arita
,
Y.
, and
RosalesGuzmán
,
C.
,
2021
, “
Optical Trapping With Structured Light: A Review
,”
Adv. Photonics
,
3
(
3
), pp.
034001
034001
.
11.
Jiang
,
Q.
,
Rogez
,
B.
,
Claude
,
J.-B.
,
Baffou
,
G.
, and
Wenger
,
J.
,
2020
, “
Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-Optical Trapping
,”
Nano Lett.
,
20
(
12
), pp.
8811
8817
.
12.
De Vlaminck
,
I.
, and
Dekker
,
C.
,
2012
, “
Recent Advances in Magnetic Tweezers
,”
Annu. Rev. Biophys.
,
41
(
1
), pp.
453
472
.
13.
Kotus
,
J.
,
Czyżewski
,
A.
, and
Kostek
,
B.
,
2016
, “
3D Acoustic Field Intensity Probe Design and Measurements
,”
Archiv. Acoust.
,
41
(
4
), pp.
701
711
.
14.
Marzo
,
A.
, and
Drinkwater
,
B. W.
,
2019
, “
Holographic Acoustic Tweezers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
1
), pp.
84
89
.
15.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
,
2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,”
Nat. Commun.
,
6
(
1
), p.
8661
.
16.
Meng
,
L.
,
Cai
,
F.
,
Li
,
F.
,
Zhou
,
W.
,
Niu
,
L.
, and
Zheng
,
H.
,
2019
, “
Acoustic Tweezers
,”
J. Phys. D: Appl. Phys.
,
52
(
27
), p.
273001
.
17.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
,
2018
, “
Acoustic Tweezers for the Life Sciences
,”
Nat. Methods
,
15
(
12
), pp.
1021
1028
.
18.
Ahmed
,
D.
,
Baasch
,
T.
,
Blondel
,
N.
,
Läubli
,
N.
,
Dual
,
J.
, and
Nelson
,
B. J.
,
2017
, “
Neutrophil-Inspired Propulsion in a Combined Acoustic and Magnetic Field
,”
Nat. Commun.
,
8
.
19.
Zhang
,
Z.
,
Sukhov
,
A.
,
Harting
,
J.
,
Malgaretti
,
P.
, and
Ahmed
,
D.
,
2022
, “
Rolling Microswarms Along Acoustic Virtual Walls
,”
Nat. Commun.
,
13
(
1
).
20.
Akkoyun
,
F.
,
Gucluer
,
S.
, and
Ozcelik
,
A.
,
2021
, “
Potential of the Acoustic Micromanipulation Technologies for Biomedical Research
,”
Biomicrofluidics
,
15
(
6
).
21.
Mueller
,
R. K.
,
1971
, “
Acoustic Holography
,”
Proc. IEEE
,
59
(
9
), pp.
1319
1335
.
22.
Yang
,
Y.
,
Ma
,
T.
,
Zhang
,
Q.
,
Huang
,
J.
,
Hu
,
Q.
,
Li
,
Y.
,
Wang
,
C.
, and
Zheng
,
H.
,
2022
, “
3D Acoustic Manipulation of Living Cells and Organisms Based on 2D Array
,”
IEEE Trans. Biomed. Eng.
,
69
(
7
), pp.
2342
2352
.
23.
Sapozhnikov
,
O. A.
,
Tsysar
,
S. A.
,
Khokhlova
,
V. A.
, and
Kreider
,
W.
,
2015
, “
Acoustic Holography as a Metrological Tool for Characterizing Medical Ultrasound Sources and Fields
,”
J. Acoust. Soc. Am.
,
138
(
3
), pp.
1515
1532
.
24.
Brown
,
M. D.
,
2019
, “
Phase and Amplitude Modulation With Acoustic Holograms
,”
Appl. Phys. Lett.
,
115
(
5
).
25.
Kobayashi
,
T.
,
Tanaka
,
T.
,
Yatabe
,
K.
, and
Oikawa
,
Y.
, “
Acoustic Application of Phase Reconstruction Algorithms in Optics
,”
Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Singapore
,
May 23–27
, IEEE, pp.
6212
6216
.
26.
Plasencia
,
D. M.
,
Hirayama
,
R.
,
Montano-Murillo
,
R.
, and
Subramanian
,
S.
,
2020
, “
GS-PAT: High-Speed Multi-Point Sound-Fields for Phased Arrays of Transducers
,”
ACM Trans. Graph. (TOG)
,
39
(
4
), pp.
138: 131
138: 112
.
27.
Hirayama
,
R.
,
Christopoulos
,
G.
,
Martinez Plasencia
,
D.
, and
Subramanian
,
S.
,
2022
, “
High-Speed Acoustic Holography With Arbitrary Scattering Objects
,”
Sci. Adv.
,
8
(
24
).
28.
Long
,
B.
,
Seah
,
S. A.
,
Carter
,
T.
, and
Subramanian
,
S.
,
2014
, “
Rendering Volumetric Haptic Shapes in Mid-Air Using Ultrasound
,”
ACM Trans. Graph. (TOG)
,
33
(
6
), pp.
1
10
.
29.
Sakiyama
,
E.
,
Matsubayashi
,
A.
,
Matsumoto
,
D.
,
Fujiwara
,
M.
,
Makino
,
Y.
, and
Shinoda
,
H.
, “
Midair Tactile Reproduction of Real Objects
,”
Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications
,
Leiden, The Netherlands
,
Sept. 6–9
, Springer, pp.
425
433
.
30.
Melde
,
K.
,
Mark
,
A. G.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2016
, “
Holograms for Acoustics
,”
Nature
,
537
(
7621
), pp.
518
522
.
31.
Fushimi
,
T.
,
Yamamoto
,
K.
, and
Ochiai
,
Y.
,
2021
, “
Acoustic Hologram Optimisation Using Automatic Differentiation
,”
Sci. Rep.
,
11
(
1
), p.
12678
.
32.
Zuo
,
J.
,
Leng
,
J.
, and
Fu
,
Y.
,
2022
, “
Optimized Phase-Only Hologram Generation for High-Quality Holographic Display
,”
Appl. Opt.
,
61
(
35
), pp.
10519
10527
.
33.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
34.
Li
,
B.
,
Lu
,
M.
,
Liu
,
C.
,
Liu
,
X.
, and
Ta
,
D.
,
2022
, “
Acoustic Hologram Reconstruction With Unsupervised Neural Network
,”
Front. Mater.
,
9
.
35.
Lin
,
Q.
,
Wang
,
J.
,
Cai
,
F.
,
Zhang
,
R.
,
Zhao
,
D.
,
Xia
,
X.
,
Wang
,
J.
, and
Zheng
,
H.
,
2021
, “
A Deep Learning Approach for the Fast Generation of Acoustic Hologramsa
,”
J. Acoust. Soc. Am.
,
149
(
4
), pp.
2312
2322
.
36.
Zhong
,
C.
,
Jia
,
Y.
,
Jeong
,
D. C.
,
Guo
,
Y.
, and
Liu
,
S.
,
2022
, “
AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
666
673
.
37.
Siddique
,
N.
,
Paheding
,
S.
,
Elkin
,
C. P.
, and
Devabhaktuni
,
V.
,
2021
, “
U-Net and its Variants for Medical Image Segmentation: A Review of Theory and Applications
,”
IEEE Access
,
9
, pp.
82031
82057
.
38.
Hu
,
F.
,
Zhong
,
W.
,
Ye
,
L.
,
Duan
,
D.
, and
Zhang
,
Q.
, “
A General Paradigm of Knowledge-Driven and Data-Driven Fusion
,”
Proceedings of the 2023 15th International Conference on Advanced Computational Intelligence (ICACI)
,
Seoul, South Korea
,
May 6–9
, IEEE, pp.
1
7
.
39.
Lee
,
M. H.
,
Lew
,
H. M.
,
Youn
,
S.
,
Kim
,
T.
, and
Hwang
,
J. Y.
,
2022
, “
Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
69
(
12
), pp.
3353
3366
.
40.
Wei
,
L.
, and
Rodríguez-Fortuño
,
F. J.
,
2020
, “
Far-Field and Near-Field Directionality in Acoustic Scattering
,”
New J. Phys.
,
22
(
8
).
41.
Sewak
,
M.
,
Sahay
,
S. K.
, and
Rathore
,
H.
,
2020
, “
An Overview of Deep Learning Architecture of Deep Neural Networks and Autoencoders
,”
J. Comput. Theor. Nanosci.
,
17
(
1
), pp.
182
188
.
42.
Li
,
X.
,
Song
,
W.
,
Gao
,
D.
,
Gao
,
W.
, and
Wang
,
H.
,
2020
, “
Training a U-Net Based on a Random Mode-Coupling Matrix Model to Recover Acoustic Interference Striations
,”
J. Acoust. Soc. Am.
,
147
(
4
), pp.
EL363
EL369
.
43.
Rothkamm
,
O.
,
Gürtler
,
J.
,
Czarske
,
J.
, and
Kuschmierz
,
R.
,
2021
, “
Dense U-Net for Limited Angle Tomography of Sound Pressure Fields
,”
Appl. Sci.
,
11
(
10
), p.
4570
.
44.
Punn
,
N. S.
, and
Agarwal
,
S.
,
2022
, “
Modality Specific U-Net Variants for Biomedical Image Segmentation: A Survey
,”
Artif. Intell. Rev.
,
55
(
7
), pp.
5845
5889
.
45.
Wu
,
Y.
, and
He
,
K.
, “
Group Normalization
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
3
19
.
46.
Zeng
,
X.
, and
McGough
,
R. J.
,
2008
, “
Evaluation of the Angular Spectrum Approach for Simulations of Near-Field Pressures
,”
J. Acoust. Soc. Am.
,
123
(
1
), pp.
68
76
.
47.
Dike
,
H. U.
,
Zhou
,
Y.
,
Deveerasetty
,
K. K.
, and
Wu
,
Q.
, “
Unsupervised Learning Based on Artificial Neural Network: A Review
,”
Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Shenzhen, China
,
Oct. 25–27
, IEEE,pp. 322–327.
48.
Kundu
,
T.
,
2014
, “
Acoustic Source Localization
,”
Ultrasonics
,
54
(
1
), pp.
25
38
.
49.
Robeson
,
S. M.
, and
Willmott
,
C. J.
,
2023
, “
Decomposition of the Mean Absolute Error (MAE) Into Systematic and Unsystematic Components
,”
PLoS One
,
18
(
2
), p.
e0279774
.
50.
Abraham
,
N.
, and
Khan
,
N. M.
, “
A Novel Focal Tversky Loss Function With Improved Attention u-net for Lesion Segmentation
,”
Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
,
Venice, Italy
,
Apr. 8–11
, IEEE, pp.
683
687
.
51.
Quan
,
T. M.
,
Hildebrand
,
D. G. C.
, and
Jeong
,
W.-K.
,
2021
, “
Fusionnet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomics
,”
Front. Comput. Sci.
,
3
.
52.
Hu
,
X.
,
Naiel
,
M. A.
,
Wong
,
A.
,
Lamm
,
M.
, and
Fieguth
,
P.
, “
RUNet: A Robust UNet Architecture for Image Super-Resolution
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
,
Long Beach, CA
,
June 16–20
, pp.
505
507
.
53.
Huang
,
G.
,
Liu
,
Z.
,
Van Der Maaten
,
L.
, and
Weinberger
,
K. Q.
, “
Densely Connected Convolutional Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
4700
4708
.
You do not currently have access to this content.