Abstract

The rotationally restrained stepped open cylindrical shells are typical components utilized in the aeronautic, astronautic, and marine fields for their merits in light weight and designated structural enhancement. Nonetheless, few analytical free vibration studies have been reported by reason of the challenges in dealing with the high-order partial differential equations incorporating the complex joining and boundary conditions. In the present work, we make a first successful attempt to solve such issues by developing a novel analytical solution scheme with an integration of the symplectic superposition method and the subdomain division technique. The frequencies are acquired by rigorous derivations without assuming displacement forms. The stepped open cylindrical shells subjected to three rotationally restrained boundaries under two stepped thickness directions are considered to exhibit the versatility of the proposed solution scheme, and all the free vibration solutions show excellent agreement with their counterparts from the literature or the commercial software. Moreover, sufficient parametric analyses on the crucial design variables have been conducted on the basis of the analytical solutions, and the findings may reduce the structural analysis procedure of stepped open cylindrical shells.

References

1.
Zhang
,
C.
,
Jin
,
G.
,
Wang
,
Z.
, and
Sun
,
Y.
,
2021
, “
Dynamic Stiffness Formulation and Vibration Analysis of Coupled Conical-Ribbed Cylindrical-Conical Shell Structure With General Boundary Condition
,”
Ocean Eng.
,
234
, p.
109294
.
2.
Kolarevic
,
N.
,
Nefovska-Danilovic
,
M.
, and
Petronijevic
,
M.
,
2015
, “
Dynamic Stiffness Elements for Free Vibration Analysis of Rectangular Mindlin Plate Assemblies
,”
J. Sound Vib.
,
359
, pp.
84
106
.
3.
Kolarevic
,
N.
,
Marjanović
,
M.
,
Nefovska-Danilovic
,
M.
, and
Petronijevic
,
M.
,
2016
, “
Free Vibration Analysis of Plate Assemblies Using the Dynamic Stiffness Method Based on the Higher Order Shear Deformation Theory
,”
J. Sound Vib.
,
364
, pp.
110
132
.
4.
Thinh
,
T. I.
, and
Nguyen
,
M. C.
,
2016
, “
Dynamic Stiffness Method for Free Vibration of Composite Cylindrical Shells Containing Fluid
,”
Appl. Math. Model.
,
40
(
21
), pp.
9286
9301
.
5.
Varello
,
A.
, and
Carrera
,
E.
,
2014
, “
Free Vibration Response of Thin and Thick Nonhomogeneous Shells by Refined One-Dimensional Analysis
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061001
.
6.
Carrera
,
E.
, and
Filippi
,
M.
,
2015
, “
Vibration Analysis of Thin/Thick, Composites/Metallic Spinning Cylindrical Shells by Refined Beam Models
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031020
.
7.
Wei
,
J.
,
Chen
,
M.
,
Hou
,
G.
,
Xie
,
K.
, and
Deng
,
N.
,
2013
, “
Wave Based Method for Free Vibration Analysis of Cylindrical Shells With Nonuniform Stiffener Distribution
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061011
.
8.
Cao
,
Z.
, and
Tang
,
S.
,
2011
, “
Natural Vibration of Functionally Graded Cylindrical Shells With Infinite and Finite Lengths
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011013
.
9.
Li
,
Y. S.
, and
Liu
,
B. L.
,
2022
, “
Thermal Buckling and Free Vibration of Viscoelastic Functionally Graded Sandwich Shells With Tunable Auxetic Honeycomb Core
,”
Appl. Math. Model.
,
108
, pp.
685
700
.
10.
Arshid
,
E.
,
Nia
,
M. J. M.
,
Ghorbani
,
M. A.
,
Civalek
,
Ö
, and
Kumar
,
A.
,
2023
, “
On the Poroelastic Vibrations of Lightweight FGSP Doubly-Curved Shells Integrated With GNPs-Reinforced Composite Coatings in Thermal Atmospheres
,”
Appl. Math. Model.
,
124
, pp.
122
141
.
11.
Hosokawa
,
K.
,
Murayama
,
M.
, and
Sakata
,
T.
,
2000
, “
Free Vibration Analysis of Angle-ply Laminated Shallow Cylindrical Shell With Clamped Edges
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
188
197
.
12.
Wang
,
G.
,
Li
,
W.
,
Feng
,
Z.
, and
Ni
,
J.
,
2019
, “
A Unified Approach for Predicting the Free Vibration of an Elastically Restrained Plate With Arbitrary Holes
,”
Int. J. Mech. Sci.
,
159
, pp.
267
277
.
13.
Ye
,
T.
,
Jin
,
G.
,
Chen
,
Y.
, and
Shi
,
S.
,
2014
, “
A Unified Formulation for Vibration Analysis of Open Shells With Arbitrary Boundary Conditions
,”
Int. J. Mech. Sci.
,
81
, pp.
42
59
.
14.
Li
,
H.
,
Dong
,
B.
,
Cao
,
J.
,
Zhao
,
J.
,
Xiong
,
J.
,
Yang
,
Y.
,
Du
,
D.
,
Sun
,
W.
,
Wang
,
X.
, and
Wu
,
H.
,
2023
, “
Vibration Behaviours of Foam-Filled Grille Composite Sandwich Cylindrical Shells
,”
Int. J. Mech. Sci.
,
256
, p.
108533
.
15.
Liu
,
H.
,
Sun
,
W.
,
Liu
,
X.
,
Ma
,
H.
,
Du
,
D.
, and
Li
,
H.
,
2024
, “
Vibration of Bolted Composite Cylindrical-Cylindrical Flanged Shells Considering Contact Characteristics
,”
Int. J. Mech. Sci.
,
280
, p.
109545
.
16.
Song
,
Z. G.
,
Zhang
,
L. W.
, and
Liew
,
K. M.
,
2016
, “
Active Vibration Control of CNT-Reinforced Composite Cylindrical Shells via Piezoelectric Patches
,”
Compos. Struct.
,
158
, pp.
92
100
.
17.
Liu
,
L.
,
Cao
,
D.
, and
Sun
,
S.
,
2013
, “
Vibration Analysis for Rotating Ring-Stiffened Cylindrical Shells With Arbitrary Boundary Conditions
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061010
.
18.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C. Y.
,
2015
, “
Free Vibration of Curvilinearly Stiffened Shallow Shells
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031006
.
19.
Zhao
,
C.
,
Sun
,
S.
,
Yang
,
Y.
, and
Cao
,
D.
,
2022
, “
Vibration Analysis of Rotating Combined Thin-Walled Shells With Multiple Conical Segments
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011008
.
20.
Senjanović
,
I.
,
Áatipović
,
I.
,
Alujević
,
N.
,
Čakmak
,
D.
, and
Vladimir
,
N.
,
2018
, “
A Finite Strip for the Vibration Analysis of Rotating Toroidal Shell Under Internal Pressure
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021013
.
21.
Li
,
W. L.
,
2013
, “
Vibrations of Circular Cylindrical Shells With General Elastic Boundary Restraints
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
024501
.
22.
Heidari-Soureshjani
,
A.
,
Kalantari
,
A.
,
Hesari
,
A. E.
,
Talebitooti
,
R.
, and
Talebitooti
,
M.
,
2024
, “
Cutout Effects on the Vibration of Sandwich Auxetic Cylindrical Shells With an Experimental Validation
,”
J. Sound Vib.
,
592
, p.
118624
.
23.
Sobhani
,
E.
,
Masoodi
,
A. R.
,
Civalek
,
Ö
, and
Ahmadi-Pari
,
A. R.
,
2023
, “
Free-Damped Vibration Tangential Wave Responses of FG-Sandwich Merged Hemispherical-Cylindrical Shells Under Effects of Artificial Springs at Merging and Boundary Conditions
,”
Eng. Struct.
,
284
, p.
115958
.
24.
Ersoy
,
H.
,
Mercan
,
K.
, and
Civalek
,
Ö
,
2018
, “
Frequencies of FGM Shells and Annular Plates by the Methods of Discrete Singular Convolution and Differential Quadrature Methods
,”
Compos. Struct.
,
183
, pp.
7
20
.
25.
Civalek
,
Ö
,
2017
, “
Discrete Singular Convolution Method for the Free Vibration Analysis of Rotating Shells With Different Material Properties
,”
Compos. Struct.
,
160
, pp.
267
279
.
26.
Ilanko
,
S.
,
2006
, “
On the Bounds of Gorman’s Superposition Method of Free Vibration Analysis
,”
J. Sound Vib.
,
294
(
1–2
), pp.
418
420
.
27.
Mochida
,
Y.
, and
Ilanko
,
S.
,
2021
, “
On the Rayleigh-Ritz Method, Gorman’s Superposition Method and the Exact Dynamic Stiffness Method for Vibration and Stability Analysis of Continuous Systems
,”
Thin-Wall. Struct.
,
161
, p.
107470
.
28.
Mochida
,
Y.
,
Ilanko
,
S.
,
Duke
,
M.
, and
Narita
,
Y.
,
2012
, “
Free Vibration Analysis of Doubly Curved Shallow Shells Using the Superposition-Galerkin Method
,”
J. Sound Vib.
,
331
(
6
), pp.
1413
1425
.
29.
Tian
,
B.
,
Li
,
R.
, and
Zhong
,
Y.
,
2015
, “
Integral Transform Solutions to the Bending Problems of Moderately Thick Rectangular Plates With All Edges Free Resting on Elastic Foundations
,”
Appl. Math. Model.
,
39
(
1
), pp.
128
136
.
30.
Zhang
,
J.
,
Zhou
,
C.
,
Ullah
,
S.
,
Zhong
,
Y.
, and
Li
,
R.
,
2019
, “
Two-Dimensional Generalized Finite Integral Transform Method for New Analytic Bending Solutions of Orthotropic Rectangular Thin Foundation Plates
,”
Appl. Math. Lett.
,
92
, pp.
8
14
.
31.
He
,
Y.
,
An
,
C.
, and
Su
,
J.
,
2020
, “
Generalized Integral Transform Solution for Free Vibration of Orthotropic Rectangular Plates With Free Edges
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), pp.
1
10
.
32.
An
,
D.
,
Xu
,
D.
,
Ni
,
Z.
,
Su
,
Y.
,
Wang
,
B.
, and
Li
,
R.
,
2020
, “
Finite Integral Transform Method for Analytical Solutions of Static Problems of Cylindrical Shell Panels
,”
Eur. J. Mech.—A/Solids
,
83
, p.
104033
.
33.
Meshkinzar
,
A.
,
Al-Jumaily
,
A. M.
, and
Harris
,
P. D.
,
2018
, “
Acoustic Amplification Utilizing Stepped-Thickness Piezoelectric Circular Cylindrical Shells
,”
J. Sound Vib.
,
437
, pp.
110
118
.
34.
Meshkinzar
,
A.
, and
Al-Jumaily
,
A. M.
,
2021
, “
Vibration and Acoustic Radiation Characteristics of Cylindrical Piezoelectric Transducers With Circumferential Steps
,”
J. Sound Vib.
,
511
, p.
116346
.
35.
Kapuria
,
S.
, and
Ahmed
,
A.
,
2021
, “
A Coupled Efficient Layerwise Finite Element Model for Free Vibration Analysis of Smart Piezo-Bonded Laminated Shells Featuring Delaminations and Transducer Debonding
,”
Int. J. Mech. Sci.
,
194
, p.
106195
.
36.
Mori
,
T.
,
Hiramatsu
,
T.
, and
Shamoto
,
E.
,
2011
, “
Simultaneous Double-Sided Milling of Flexible Plates With High Accuracy and High Efficiency—Suppression of Forced Chatter Vibration With Synchronized Single-Tooth Cutters
,”
Precis. Eng.
,
35
(
3
), pp.
416
423
.
37.
Chen
,
M.
,
Xie
,
K.
,
Xu
,
K.
, and
Yu
,
P.
,
2015
, “
Wave Based Method for Free and Forced Vibration Analysis of Cylindrical Shells With Discontinuity in Thickness
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051004
.
38.
Tang
,
D.
,
Yao
,
X.
,
Wu
,
G.
, and
Peng
,
Y.
,
2017
, “
Free and Forced Vibration Analysis of Multi-Stepped Circular Cylindrical Shells With Arbitrary Boundary Conditions by the Method of Reverberation-ray Matrix
,”
Thin-Wall. Struct.
,
116
, pp.
154
168
.
39.
Li
,
H.
,
Pang
,
F.
,
Miao
,
X.
, and
Li
,
Y.
,
2019
, “
Jacobi–Ritz Method for Free Vibration Analysis of Uniform and Stepped Circular Cylindrical Shells With Arbitrary Boundary Conditions: A Unified Formulation
,”
Comput. Math. Appl.
,
77
(
2
), pp.
427
440
.
40.
Zheng
,
D.
,
Du
,
J.
, and
Liu
,
Y.
,
2021
, “
Vibration Characteristics Analysis of an Elastically Restrained Cylindrical Shell With Arbitrary Thickness Variation
,”
Thin-Wall. Struct.
,
165
, p.
107930
.
41.
Li
,
Z.
,
Zhong
,
R.
,
Wang
,
Q.
,
Qin
,
B.
, and
Yu
,
H.
,
2020
, “
The Thermal Vibration Characteristics of the Functionally Graded Porous Stepped Cylindrical Shell by Using Characteristic Orthogonal Polynomials
,”
Int. J. Mech. Sci.
,
182
, p.
105779
.
42.
Xu
,
H.
,
Wang
,
Y.
,
Xu
,
Z.
, and
Yu
,
X.
,
2024
, “
Gegenbauer-Ritz Method for Free Vibration Analysis of Rotating Functionally Graded Graphene Reinforced Porous Composite Stepped Cylindrical Shells With Arbitrary Boundary Conditions
,”
Eng. Struct.
,
303
, p.
117555
.
43.
Guo
,
C.
,
Liu
,
T.
,
Wang
,
Q.
,
Qin
,
B.
, and
Wang
,
A.
,
2021
, “
A Unified Strong Spectral Tchebychev Solution for Predicting the Free Vibration Characteristics of Cylindrical Shells With Stepped-Thickness and Internal–External Stiffeners
,”
Thin-Wall. Struct.
,
168
, p.
108307
.
44.
Guo
,
C.
,
Liu
,
T.
,
Wang
,
Q.
,
Bin
,
Q.
,
Shao
,
W.
, and
Wang
,
A.
,
2021
, “
Spectral-Tchebychev Technique for the Free Vibration Analysis of Composite Laminated Stepped and Stiffened Cylindrical Shells With Arbitrary Boundary Conditions
,”
Compos. Struct.
,
272
, p.
114193
.
45.
Zhang
,
L.
, and
Xiang
,
Y.
,
2007
, “
Exact Solutions for Vibration of Stepped Circular Cylindrical Shells
,”
J. Sound Vib.
,
299
(
4
), pp.
948
964
.
46.
Jia
,
J. F.
,
Lai
,
A. D.
,
Qu
,
J. L.
,
Zhao
,
J. Y.
,
Sun
,
J. B.
,
Zhou
,
Z. H.
,
Xu
,
X. S.
, and
Lim
,
C. W.
,
2021
, “
Effects of Local Thinning Defects and Stepped Thickness for Free Vibration of Cylindrical Shells Using a Symplectic Exact Solution Approach
,”
Acta Astronaut.
,
178
, pp.
658
671
.
47.
Jia
,
J.
,
Lai
,
A.
,
Li
,
T.
,
Zhou
,
Z.
,
Xu
,
X.
, and
Lim
,
C. W.
,
2022
, “
A Symplectic Analytical Approach for Free Vibration of Orthotropic Cylindrical Shells With Stepped Thickness Under Arbitrary Boundary Conditions
,”
Thin-Wall. Struct.
,
171
, p.
108696
.
48.
Jia
,
J.
,
Xu
,
X.
,
Li
,
Y.
,
Zhu
,
S.
,
Ni
,
Y.
,
Lai
,
A.
,
Tong
,
Z.
, and
Zhou
,
Z.
,
2023
, “
Free Vibration Characteristics of Piezoelectric Cylindrical Shells With Stepped Thickness Using an Analytical Symplectic Approach
,”
Appl. Math. Model.
,
117
, pp.
726
740
.
49.
Zhang
,
L.
,
2006
, “
Vibration of Open Cylindrical Shells With Stepped Thickness Variations
,”
J. Eng. Mech.
,
132
(
7
), pp.
780
784
.
50.
Kolarević
,
N.
, and
Nefovska-Danilović
,
M.
,
2020
, “
Dynamic Stiffness—Based Free Vibration Study of Open Circular Cylindrical Shells
,”
J. Sound Vib.
,
486
, p.
115600
.
51.
Li
,
Z.
,
Ye
,
T.
,
Jin
,
G.
,
Yang
,
T. J.
,
Tian
,
L.
, and
Chen
,
Y.
,
2022
, “
Dynamic Stiffness Formulation for Vibration Analysis of an Open Cylindrical Shell and Its Coupling Structures Based on a Generalized Superposition Method
,”
J. Sound Vib.
,
538
, p.
117237
.
52.
Zhang
,
S.
, and
Xu
,
L.
,
2017
, “
Bending of Rectangular Orthotropic Thin Plates With Rotationally Restrained Edges: A Finite Integral Transform Solution
,”
Appl. Math. Model.
,
46
, pp.
48
62
.
53.
Zhang
,
S.
,
Xu
,
L.
, and
Li
,
R.
,
2019
, “
New Exact Series Solutions for Transverse Vibration of Rotationally-Restrained Orthotropic Plates
,”
Appl. Math. Model.
,
65
, pp.
348
360
.
54.
He
,
Y.
,
Duan
,
M.
, and
Su
,
J.
,
2021
, “
Bending of Rectangular Orthotropic Plates With Rotationally Restrained and Free Edges: Generalized Integral Transform Solutions
,”
Eng. Struct.
,
247
, p.
113129
.
55.
Zhang
,
J.
,
Zhao
,
Q.
,
Ullah
,
S.
,
Geng
,
L.
, and
Civalek
,
Ö
,
2021
, “
A New Analytical Solution of Vibration Response of Orthotropic Composite Plates With Two Adjacent Edges Rotationally-Restrained and the Others Free
,”
Compos. Struct.
,
266
, p.
113882
.
56.
Zheng
,
X.
,
Sun
,
Y.
,
Huang
,
M.
,
An
,
D.
,
Li
,
P.
,
Wang
,
B.
, and
Li
,
R.
,
2019
, “
Symplectic Superposition Method-Based New Analytic Bending Solutions of Cylindrical Shell Panels
,”
Int. J. Mech. Sci.
,
152
, pp.
432
442
.
57.
Li
,
R.
,
Zheng
,
X.
,
Yang
,
Y.
,
Huang
,
M.
, and
Huang
,
X.
,
2019
, “
Hamiltonian System-Based New Analytic Free Vibration Solutions of Cylindrical Shell Panels
,”
Appl. Math. Model.
,
76
, pp.
900
917
.
58.
Shi
,
Y.
,
Zhou
,
C.
,
Ni
,
Z.
,
Wang
,
Z.
,
Wang
,
C.
, and
Li
,
R.
,
2024
, “
Free Vibration of Non-Lévy-Type Rectangular Line-Hinged Plates: Analytical Solutions in the Symplectic Framework
,”
Thin-Wall. Struct.
,
198
, p.
111692
.
59.
Shi
,
Y.
,
An
,
D.
,
Wu
,
Z.
,
Liang
,
L.
,
Chen
,
L.
, and
Li
,
R.
,
2024
, “
Symplectic Analytical Solutions for Free Vibration of Elastically Line-Hinged Orthotropic Rectangular Plates With Rotationally Restrained Edges
,”
Appl. Math. Model.
,
136
, p.
115629
.
60.
Leissa
,
A. W.
,
1973
,
Vibration of Shells
, Vol.
288
,
Scientific and Technical Information Office, National Aeronautics and Space
.
61.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
62.
Lim
,
C. W.
, and
Xu
,
X.
,
2010
, “
Symplectic Elasticity: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050802
.
63.
Wolfram Research, Inc
,
2021
,
Mathematica 12.3
,
Wolfram Research, Inc.
,
Champaign, IL
.
64.
ABAQUS
,
2013
,
Analysis Users Guide V6. 13
,
Dassault Systèmes
,
Pawtucket, RI
.
65.
Christensen
,
R. M.
,
2023
, “
Review of the Basic Elastic Mechanical Properties and Their Realignment to Establish Ductile Versus Brittle Failure Behaviors
,”
ASME Appl. Mech. Rev.
,
75
(
3
), p.
030801
.
66.
Firooz
,
S.
,
Steinmann
,
P.
, and
Javili
,
A.
,
2021
, “
Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling
,”
ASME Appl. Mech. Rev.
,
73
(
4
), p.
040802
.
67.
Dorgant
,
G.
,
Johnson
,
W. R.
,
DeLima
,
W.
, and
Leamy
,
M. J.
,
2023
, “
Experimental Verification of Pulse Shaping in Elastic Metamaterials Under Impact Excitation
,”
ASME J. Vib. Acoust.
,
145
(
2
), p.
021009
.
68.
Deymier
,
P. A.
,
Runge
,
K.
,
Hasan
,
M. A.
,
Levine
,
J. A.
, and
Leamy
,
M. J.
,
2024
, “
Application of Acoustic Metamaterials to Phase Computing
,”
J. Acoust. Soc. Am.
,
155
(
3_Supplement
), pp.
A57
A57
.
69.
Mork
,
N.
,
Rajchel
,
M. K.
,
Varenberg
,
M.
,
Antoniou
,
A.
, and
Leamy
,
M. J.
,
2024
, “
Quasistatic Strain Fields in Normally- and Tangentially-Loaded Elastomeric Rollers Under Impending Slip
,”
Int. J. Solids Struct.
,
292
, p.
112739
.
70.
Gonçalves
,
P. B.
,
Silva
,
F. M. A.
, and
Del Prado
,
Z. J. G. N.
,
2008
, “
Low-Dimensional Models for the Nonlinear Vibration Analysis of Cylindrical Shells Based on a Perturbation Procedure and Proper Orthogonal Decomposition
,”
J. Sound Vib.
,
315
(
3
), pp.
641
663
.
71.
Jansen
,
E. L.
,
2008
, “
A Perturbation Method for Nonlinear Vibrations of Imperfect Structures: Application to Cylindrical Shell Vibrations
,”
Int. J. Solids Struct.
,
45
(
3
), pp.
1124
1145
.
72.
A. A.
Yazdi
,
2013
, “
Applicability of Homotopy Perturbation Method to Study the Nonlinear Vibration of Doubly Curved Cross-Ply Shells
,”
Compos. Struct.
,
96
, pp.
526
531
.
You do not currently have access to this content.