Abstract

In this article, a combination of experimental statistical energy analysis and finite element method (ESEA-FEM hybrid) is used to determine the amount of vibroacoustic energy transferred through the transformer experimental model structural parts and through the cooling oil. A vibroacoustic transmission path analysis was conducted separately for the winding and core vibrations in two different operating conditions, the short-circuit (SC) and the open-circuit (OC) tests. Along with these two conditions for the oil-filled tank, the same methodology was applied to the empty tank in the OC operating condition. The findings indicate that structural transmission is dominant. A fluid-borne noise component is 5 dBA less than the structure borne from the windings as a vibration source and 10.8 dBA less from the core as a vibration source. The presented methodology is novel in its statistical determination of the quantity of sound power transferred along each path in the power transformers, offering potential applications and insight into noise reduction strategies and numerical analysis and verification.

References

1.
Di
,
G. Q.
,
Zhou
,
X. X.
, and
Chen
,
X. W.
,
2015
, “
Annoyance Response to Low Frequency Noise With Tonal Components: A Case Study on Transformer Noise
,”
Appl. Acoust.
,
91
(
4
), pp.
40
46
.
2.
Jin
,
M.
,
Pan
,
J.
,
Huang
,
H.
, and
Zhou
,
J.
,
2012
, “
Transmission of Vibration of a Power Transformer From the Internal Structures to the Tank
,”
Proceedings of Acoustics 2012—Fremantle
,
Fremantle, Australia
,
Nov. 21–23
.
3.
Jin
,
M.
, and
Pan
,
J.
,
2016
, “
Vibration Transmission From Internal Structures to the Tank of an Oil-Filled Power Transformer
,”
Appl. Acoust.
,
113
, pp.
1
6
.
4.
Zhang
,
F.
,
Ji
,
S.
,
Shi
,
Y.
,
Zhan
,
C.
, and
Zhu
,
L.
,
2019
, “
Investigation on Vibration Source and Transmission Characteristics in Power Transformers
,”
Appl. Acoust.
,
151
, pp.
99
112
.
5.
Sohrabi
,
S.
,
Segura Torres
,
A.
,
Molins
,
E. C.
,
Perazzolo
,
A.
,
Bizzarro
,
G.
, and
Rodríguez Sorribes
,
P. V.
,
2023
, “
A Comparative Study of a Hybrid Experimental–Statistical Energy Analysis Model With Advanced Transfer Path Analysis for Analyzing Interior Noise of a Tiltrotor Aircraft
,”
Appl. Acoust.
,
13
(
22
), p.
12128
.
6.
Magrans
,
F. X.
,
1981
, “
Method of Measuring Transmission Paths
,”
J. Sound Vib.
,
74
(
3
), pp.
321
330
.
7.
Aragonès
,
À
,
Poblet-Puig
,
J.
,
Arcas
,
K.
,
Rodríguez
,
P. V.
,
Magrans
,
F. X.
, and
Rodríguez-Ferran
,
A.
,
2019
, “
Experimental and Numerical Study of Advanced Transfer Path Analysis Applied to a Box Prototype
,”
Mech. Syst. Signal Process
,
114
(
1
), pp.
448
466
.
8.
Bouhaj
,
M.
,
von Estorff
,
O.
, and
Peiffer
,
A.
,
2017
, “
An Approach for the Assessment of the Statistical Aspects of the SEA Coupling Loss Factors and the Vibrational Energy Transmission in Complex Aircraft Structures: Experimental Investigation and Methods Benchmark
,”
J. Sound Vib.
,
403
(
9
), pp.
152
172
.
9.
Moeller
,
M. J.
,
Gmerek
,
M.
, and
Nagi
,
A.
,
2009
, “
Power Transfer Functions for Aircraft Statistical Energy Analysis Model Validation
,”
15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
,
May 11–13
.
10.
Culla
,
A.
,
D’Ambrogio
,
W.
,
Fregolent
,
A.
, and
Milana
,
S.
,
2016
, “
Vibroacoustic Optimization Using a Statistical Energy Analysis Model
,”
J. Sound Vib.
,
375
(
8
), pp.
102
114
.
11.
Forssén
,
J.
,
Tober
,
S.
,
Corakci
,
A. C.
,
Frid
,
A.
, and
Kropp
,
W.
,
2012
, “
Modelling the Interior Sound Field of a Railway Vehicle Using Statistical Energy Analysis
,”
Appl. Acoust.
,
73
(
4
), pp.
307
311
.
12.
Jang
,
H.
, and
Hopkins
,
C.
,
2018
, “
Prediction of Sound Transmission in Long Spaces Using Ray Tracing and Experimental Statistical Energy Analysis
,”
Appl. Acoust.
,
130
(
1
), pp.
15
33
.
13.
Zárate
,
R.
,
Poblet-Puig
,
J.
,
Ortega
,
M.
, and
López-Parra
,
M.
,
2020
, “
Statistical Energy Analysis Model for Sound Pressure Level Prediction on Refrigerators
,”
Acoust. Aust.
,
48
(
2
), pp.
233
250
.
14.
Borello
,
G.
,
2010
, “
Virtual SEA Analysis of a Warship Classification
,”
10ème Congrès Français D’Acoustique
,
Lyon, France
,
Apr. 12–16
.
15.
Hawes
,
D. H.
,
Langley
,
R. S.
,
Butlin
,
T.
, and
Ishii
,
Y.
,
2019
, “
A Hybrid Finite Element-Statistical Energy Analysis Method for Impulsive and Transient Loading
,”
J. Sound Vib.
,
459
(
10
), p.
114849
.
16.
Zhang
,
B.
,
Yan
,
N.
,
Du
,
J.
,
Han
,
F.
, and
Wang
,
H.
,
2018
, “
A Novel Approach to Investigate the Core Vibration in Power Transformers
,”
IEEE Trans. Magn.
,
54
(
11
), pp.
1
4
.
17.
Wang
,
Y.
,
Pan
,
J.
, and
Jin
,
M.
,
2011
, “
Finite Element Modelling of the Vibration of a Power Transformer
,”
Proceedings of ACOUSTICS
,
Gold Coast, Queensland, Australia
,
Nov. 2–4
.
18.
Case
,
J.
,
2017
, “
Numerical Analysis of the Vibration and Acoustic Characteristics of Large Power Transformers
,”
Ph.D. thesis
,
Queensland University of Technology
,
Brisbane, Australia
.
19.
Yoshida
,
K.
,
Hoshino
,
T.
,
Murase
,
S.
,
Murakami
,
H.
, and
Miyashita
,
T.
,
2021
, “
Analysis of Load Noise Components in Small Core-Form Transformers
,”
IEEE Trans. Power Delivery
,
36
(
5
), pp.
2694
2704
.
20.
Hsu
,
C. H.
,
Lee
,
S. L.
,
Lin
,
C. C.
,
Liu
,
C. S.
,
Chang
,
S. Y.
,
Hsieh
,
M. F.
,
Huang
,
Y. M.
, and
Fu
,
C. M.
,
2015
, “
Reduction of Vibration and Sound-Level for a Single-Phase Power Transformer With Large Capacity
,”
IEEE Trans. Magn.
,
51
(
11
), p.
11
.
21.
Bouayed
,
K.
,
Mebarek
,
L.
,
Lanfranchi
,
V.
,
Chazot
,
J. D.
,
Marechal
,
R.
, and
Hamdi
,
M. A.
,
2017
, “
Noise and Vibration of a Power Transformer Under an Electrical Excitation
,”
Appl. Acoust.
,
128
(
12
), pp.
64
70
.
22.
Lyon
,
R. H.
, and
Maidanik
,
G.
,
1962
, “
Power Flow Between Linearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
34
(
5
), pp.
623
639
.
23.
Crocker
,
M. J.
, and
Price
,
A. J.
,
1969
, “
Sound Transmission Using Statistical Energy Analysis
,”
J. Sound Vib.
,
9
(
3
), pp.
469
486
.
24.
Lyon
,
R. H.
,
DeJong
,
R. G.
, and
Lyon
,
R. H.
,
1995
,
Theory and Application of Statistical Energy Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Le Bot
,
A.
,
2015
,
Foundation of Statistical Energy Analysis in Vibroacoustics
,
Oxford University Press
,
Oxford, UK
, p.
5
.
26.
Holger Rindel
,
J.
,
2017
,
Sound Insulation in Buildings
,
CRC Press
,
Boca Raton, FL
, p.
1
.
27.
Jacobsen
,
F.
,
2008
,
The Sound Field in a Reverberation Room, Technical Report, Note 31261, Technical University of Denmark
.
28.
Waterhouse
,
R. V.
,
1955
, “
Interference Patterns in Reverberant Sound Fields
,”
J. Acoust. Soc. Am.
,
27
(
2
), pp.
247
258
.
29.
Sarradj
,
E.
,
2004
, “
Energy-Based Vibroacoustics: SEA and Beyond
,”
Proceedings of the Joint Congress CFA/DAGA 2004
,
Strasbourg, France
,
Mar. 22–25
, pp.
1157
1162
.
30.
Crocker
,
M. J.
,
2007
,
Handbook of Noise and Vibration Control
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
31.
Bies
,
D. A.
, and
Hansen
,
C. H.
,
2009
,
Engineering Noise Control: Theory and Practice
, 4th ed.,
Spon Press
,
London, UK
, p.
1
.
32.
International Electrotechnical Commission (IEC)
,
2016
,
IEC 60076-10:2016 – Power Transformers – Part 10: Determination of Sound Levels. Geneva, Switzerland, IEC
.
33.
Petrović
,
K.
,
Petošić
,
A.
, and
Župan
,
T.
,
2022
, “
Grid-Like Vibration Measurements on Power Transformer Tank During Open-Circuit and Short-Circuit Tests
,”
Energies
,
15
(
2
), p.
492
.
34.
Clough
,
R. W.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
35.
Heutschi
,
K.
,
2016
,
Lecture Notes on Acoustics I
,
Swiss Federal Institute of Technology Zurich
,
Zurich, Switzerland
.
36.
Golub
,
G. H.
, and
Underwood
,
R.
,
1977
, “The Block Lanczos Method for Computing Eigenvalues,”
Mathematical Software III
,
J. R.
Rice
,ed.,
Academic Press
,
New York
, pp.
361
377
.
37.
Petrović
,
K.
,
Petošić
,
A.
, and
Župan
,
T.
,
2023
, “
Analytical Sound Pressure Level Determination Around a Transformer Using Measured Vibration Velocity Distribution
,”
ISH 2023—23rd International Symposium on High Voltage Engineering
,
Glasgow, UK
,
Aug. 28–Sept. 1
, pp.
1316
1319
.
38.
Petrović
,
K.
,
Petošić
,
A.
, and
Župan
,
T.
,
2024
, “
Sound Pressure Level Determination Around the Transformer Using Coherent and Incoherent Analytical Summation Methods
,”
Noise Vib. Worldw.
,
55
(
6–7
), pp.
369
381
.
39.
Cremer
,
L.
, and
Heckl
,
M.
,
1988
,
Structure-Borne Sound
,
Springer
,
Berlin Heidelberg
.
40.
International Organization for Standardization (ISO)
,
2010
,
ISO 3744:2010 – Acoustics — Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure — Engineering Methods for an Essentially Free Field Over a Reflecting Plane, Geneva, Switzerland, ISO
.
You do not currently have access to this content.