Abstract

We consider the piecewise linear (PWL) vibrations in a cracked Rayleigh beam. The change in local stiffness at the crack site due to a mode-1 crack is introduced through a PWL flexural spring such that the local stiffness is higher in the closed crack configuration than in the open crack configuration. However, without loss of generality, we consider the closed crack configuration to be an intact/pristine beam disregarding the contact micromechanics and relative motion of the cracked surfaces. However, the presented method is applicable even when one considers loss of flexural rigidity in the closed crack configuration. Such a model results in slope discontinuity at the crack site in both open and closed crack configurations. It is recognized that the dynamics in these two mutually exclusive configurations are individually linear and support self-adjoint eigenvalue problems. However, the beam experiences the PWL character of the local stiffness at the crack site when it transits from one configuration to another. With this premise, a semi-analytical approach is evolved by invoking the expansion theorem in each of these configurations in terms of their respective orthonormal eigenfunctions. As the beam transits between the configurations governed by a switching condition, the displacement and velocity of the beam are matched at the very instant. The present study is unique in its semi-analytical approach based on the first principles, physical reasoning, mathematical validity, and the generality that it provides for further investigation. We present interesting results emerging in the free vibrations exhibiting energy exchange between nonclosely spaced modes. However, the forced vibrations exhibit resonance close to the ith PWL frequency, defined in terms of the ith eigenfrequencies of both configurations. Finally, a method based on the canonical action–angle (A–A) variables and the method of averaging is devised to study the forced vibrations of the cracked beam by deriving an averaged slow-flow model. We present the comparative results and discuss the limitations of some of these approaches in the study of such dynamical systems.

References

1.
Dally
,
J. W.
, and
Riley
,
W. F.
,
1991
,
Experimental Stress Analysis
, 3rd ed.,
McGraw Hill Education
,
New York
.
2.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
, 1st ed.,
Prentice Hall
,
New Jersey
.
3.
Hagedorn
,
P.
, and
DasGupta
,
A.
,
2007
,
Vibrations and Waves in Continuous Mechanical Systems
, 1st ed.,
John Wiley
,
Chichester
.
4.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
, 4th ed.,
CRC Press
,
Boca Raton, FL
.
5.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
American Society of Mechanical Engineers
,
New York
.
6.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley's Mechanical Engineering Design
, 9th ed.,
McGraw-Hill
,
New York
.
7.
Dieter
,
G. E.
, and
Bacon
,
D.
,
1988
,
Mechanical Metallurgy
, 2nd ed.,
McGraw-Hill
,
Singapore
.
8.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
361
364
.
9.
Yokoyama
,
T.
, and
Chen
,
M.-C.
,
1998
, “
Vibration Analysis of Edge-Cracked Beams Using a Line-Spring Model
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
403
409
.
10.
Abraham
,
O. N. L.
, and
Brandon
,
J. A.
,
1995
, “
The Modelling of the Opening and Closure of a Crack
,”
ASME J. Vib. Acoust.
,
117
(
3A
), pp.
370
377
.
11.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
,
1990
, “
Vibration Analysis of a Cracked Beam
,”
Comput. Struct.
,
36
(
2
), pp.
245
250
.
12.
Chondros
,
T. G.
, and
Dimarogonas
,
A. D.
,
1998
, “
Vibration of a Cracked Cantilever Beam
,”
ASME J. Vib. Acoust.
,
120
(
3
), pp.
742
746
.
13.
Kisa
,
M.
, and
Brandon
,
J.
,
2000
, “
The Effects of Closure of Cracks on the Dynamics of a Cracked Cantilever Beam
,”
J. Sound Vib.
,
238
(
1
), pp.
1
8
.
14.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
,
2001
, “
Vibration of a Beam With a Breathing Crack
,”
J. Sound Vib.
,
239
(
1
), pp.
57
67
.
15.
Shen
,
M.-H. H.
, and
Chu
,
Y. C.
,
1992
, “
Vibrations of Beams With a Fatigue Crack
,”
Comput. Struct.
,
45
(
1
), pp.
79
93
.
16.
Wei
,
C.
, and
Shang
,
X.
,
2019
, “
Analysis on Nonlinear Vibration of Breathing Cracked Beam
,”
J. Sound Vib.
,
461
, p.
114901
.
17.
Shen
,
M.-H.
, and
Pierre
,
C.
,
1990
, “
Natural Modes of Bernoulli-Euler Beams With Symmetric Cracks
,”
J. Sound Vib.
,
138
(
1
), pp.
115
134
.
18.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
,
1991
, “
Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam
,”
J. Sound Vib.
,
150
(
2
), pp.
191
201
.
19.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
,
1997
, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
,
207
(
2
), pp.
249
270
.
20.
Andreaus
,
U.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2007
, “
Non-Linear Dynamics of a Cracked Cantilever Beam Under Harmonic Excitation
,”
Int. J. Non Linear Mech.
,
42
(
3
), pp.
566
575
.
21.
Lin
,
H. P.
,
Chang
,
S. C.
, and
Wu
,
J. D.
,
2002
, “
Beam Vibrations With an Arbitrary Number of Cracks
,”
J. Sound Vib.
,
258
(
5
), pp.
987
999
.
22.
Biondi
,
B.
, and
Caddemi
,
S.
,
2007
, “
Euler–Bernoulli Beams With Multiple Singularities in the Flexural Stiffness
,”
Eur. J. Mech. A
,
26
(
5
), pp.
789
809
.
23.
Caddemi
,
S.
,
Caliò
,
I.
, and
Marletta
,
M.
,
2010
, “
The Non-Linear Dynamic Response of the Euler–Bernoulli Beam With an Arbitrary Number of Switching Cracks
,”
Int. J. Non Linear Mech.
,
45
(
7
), pp.
714
726
.
24.
Hadian Jazi
,
S.
,
Hadian
,
M.
, and
Torabi
,
K.
,
2024
, “
An Exact Closed-Form Explicit Solution of Free Transverse Vibration for Non-Uniform Multi-Cracked Beam
,”
J. Sound Vib.
,
570
, p.
117986
.
25.
Palmeri
,
A.
, and
Cicirello
,
A.
,
2011
, “
Physically-Based Dirac’s Delta Functions in the Static Analysis of Multi-Cracked Euler–Bernoulli and Timoshenko Beams
,”
Int. J. Solids Struct.
,
48
(
14–15
), pp.
2184
2195
.
26.
Bouboulas
,
A.
, and
Anifantis
,
N.
,
2011
, “
Finite Element Modeling of a Vibrating Beam With a Breathing Crack: Observations on Crack Detection
,”
Struct. Health. Monit.
,
10
(
2
), pp.
131
145
.
27.
Chatterjee
,
A.
,
2010
, “
Structural Damage Assessment in a Cantilever Beam With a Breathing Crack Using Higher Order Frequency Response Functions
,”
J. Sound Vib.
,
329
(
16
), pp.
3325
3334
.
28.
Rezaee
,
M.
, and
Fekrmandi
,
H.
,
2012
, “
A Theoretical and Experimental Investigation on Free Vibration Behavior of a Cantilever Beam With a Breathing Crack
,”
Shock Vibr.
,
19
(
2
), pp.
175
186
.
29.
Kharazan
,
M.
,
Irani
,
S.
, and
Reza Salimi
,
M.
,
2022
, “
Nonlinear Vibration Analysis of a Cantilever Beam With a Breathing Crack and Bilinear Behavior
,”
J. Vib. Control
,
28
(
19–20
), pp.
2653
2665
.
30.
Wiercigroch
,
M.
,
1997
, “
Chaotic Vibration of a Simple Model of the Machine Tool-Cutting Process System
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
468
475
.
31.
Davies
,
M. A.
, and
Balachandran
,
B.
,
2000
, “
Impact Dynamics in Milling of Thin-Walled Structures
,”
Nonlinear Dyn.
,
22
(
4
), pp.
375
392
.
32.
Doole
,
S. H.
, and
Hogan
,
S. J.
,
1996
, “
A Piece Wise Linear Suspension Bridge Model: Nonlinear Dynamics and Orbit Continuation
,”
Dyn. Stab. Syst.
,
11
(
1
), pp.
19
47
.
33.
Dyskin
,
A. V.
,
Pasternak
,
E.
, and
Pelinovsky
,
E.
,
2007
, “
Modelling Resonances in Topological Interlocking Structures
,”
5th Australasian Congress on Applied Mechanics
,
Brisbane, Australia
,
Dec. 10–12
.
34.
Dyskin
,
A. V.
,
Pasternak
,
E.
, and
Estrin
,
Y.
,
2012
, “
Mortarless Structures Based on Topological Interlocking
,”
Front. Struct. Civil Eng.
,
6
(
2
), pp.
188
197
.
35.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.
36.
Thompson
,
J. M. T.
,
Bokaian
,
A. R.
, and
Ghaffari
,
R.
,
1983
, “
Subharmonic Resonances and Chaotic Motions of a Bilinear Oscillator
,”
IMA J. Appl. Math.
,
31
(
3
), pp.
207
234
.
37.
Chen
,
S.-L.
, and
Shaw
,
S. W.
,
1996
, “
Normal Modes for Piecewise Linear Vibratory Systems
,”
Nonlinear Dyn.
,
10
(
2
), pp.
135
164
.
38.
Vestroni
,
F.
,
Luongo
,
A.
, and
Paolone
,
A.
,
2008
, “
A Perturbation Method for Evaluating Nonlinear Normal Modes of a Piecewise Linear Two-Degrees-of-Freedom System
,”
Nonlinear Dyn.
,
54
(
4
), pp.
379
393
.
39.
Natsiavas
,
S.
,
1990
, “
On the Dynamics of Oscillators With Bi-Linear Damping and Stiffness
,”
Int. J. Non Linear Mech.
,
25
(
5
), pp.
535
554
.
40.
Natsiavas
,
S.
,
1991
, “
Dynamics of Piecewise Linear Oscillators With van der Pol Type Damping
,”
Int. J. Non Linear Mech.
,
26
(
3–4
), pp.
349
366
.
41.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2000
, “
Non-Linear Dynamics of Gear-Pair Systems With Periodic Stiffness and Backlash
,”
J. Sound Vib.
,
229
(
2
), pp.
287
310
.
42.
Natsiavas
,
S.
,
Theodossiades
,
S.
, and
Goudas
,
I.
,
2000
, “
Dynamic Analysis of Piecewise Linear Oscillators With Time Periodic Coefficients
,”
Int. J. Non Linear Mech.
,
35
(
1
), pp.
53
68
.
43.
Marathe
,
A.
, and
Chatterjee
,
A.
,
2006
, “
Asymmetric Mathieu Equations
,”
Proc. R. Soc. A
,
462
(
2070
), pp.
1643
1659
.
44.
Natsiavas
,
S.
,
1993
, “
Dynamics of Multiple Degree of Freedom Oscillator With Colliding Components
,”
J. Sound Vib.
,
165
(
3
), pp.
439
453
.
45.
Guzek
,
A.
,
Dyskin
,
A. V.
,
Pasternak
,
E.
, and
Shufrin
,
I.
,
2016
, “
Asymptotic Analysis of Bilinear Oscillators With Preload
,”
Int. J. Eng. Sci.
,
106
, pp.
125
141
.
46.
Jayaprakash
,
K. R.
,
Tandel
,
V.
, and
Starosvetsky
,
Y.
,
2023
, “
Dynamics of Excited Piecewise Linear Oscillators
,”
Nonlinear Dyn.
,
111
(
6
), pp.
5513
5532
.
47.
Jayaprakash
,
K. R.
, and
Starosvetsky
,
Y.
,
2020
, “
Analytical Study of the Transition Curves in the Bi-Linear Mathieu Equation
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2615
2627
.
48.
Gendelman
,
O. V.
, and
Sapsis
,
T.
,
2017
, “
Energy Exchange and Localization in Essentially Nonlinear Oscillatory Systems: Canonical Formalism
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011009
.
49.
Gendelman
,
O. V.
,
2018
, “
Escape of a Harmonically Forced Particle From an Infinite-Range Potential Well: A Transient Resonance
,”
Nonlinear Dyn.
,
93
(
1
), pp.
79
88
.
50.
Dimarogonas
,
A. D.
, and
Papadopoulos
,
C. A.
,
1983
, “
Vibration of Cracked Shafts in Bending
,”
J. Sound Vib.
,
91
(
4
), pp.
583
593
.
51.
Tandel
,
V.
,
2021
, “
Piecewise Linear Dynamics of a Cracked Beam
,”
M.Tech. thesis
,
Indian Institute of Technology Gandhinagar
,
Gandhinagar
.
52.
Lin
,
R. M.
, and
Ng
,
T. Y.
,
2018
, “
Applications of Higher-Order Frequency Response Functions to the Detection and Damage Assessment of General Structural Systems With Breathing Cracks
,”
Int. J. Mech. Sci.
,
148
, pp.
652
666
.
53.
Percival
,
I.
, and
Richards
,
D.
,
1994
,
Introduction to Dynamics
, 1st ed.,
Cambridge University Press
,
Cambridge
.
54.
Lichtenberg
,
A. J.
, and
Lieberman
,
M. A.
,
2010
,
Regular and Chaotic Dynamics
, 2nd ed.,
Springer
,
Berlin
.
You do not currently have access to this content.