Abstract

Manufacturing tolerances and engine wear produce slight variations in the nominally identical blades of a bladed disk, or blisk. In theory, the vibrational energy of a tuned blisk is evenly distributed among the identical blades. Mistuning arises when blades are not exactly identical, producing vibration localization at one or more blades that can lead to premature failure via high-cycle fatigue. Blisk designers must consider how expected manufacturing variations and potential engine wear affect blade vibration and lifetime. However, a single experimental blisk can only capture a single mistuned configuration, making experimental assessment of mistuning both cost- and time-prohibitive. This paper investigates piezoelectric-induced stiffness perturbations as a potential approach that enables rapid testing of a wide range of mistuned configurations in a lab environment. Integrating piezoelectric material onto the blisk produces a continuous range of effective blade stiffness values. Piezoelectric stiffness perturbations alter the relative stiffnesses of all blades, changing the mistuned configuration. Simulations of a lumped blisk model characterize piezoelectric mistuning to motivate use in experimental preliminary testing of blisks. Optimization of the piezoelectric stiffness perturbation enables testing of desired mistuned amplitude distributions. Finally, benchtop testing of an academic blisk validates the ability of piezoelectric stiffness perturbations to change the mistuned configuration without any mechanical adjustments. Overall, piezoelectric mistuning enables rapid investigation of a theoretically infinite number of mistuned configurations with only one experimental blisk.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbo-Machine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.
2.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
3.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Disks: A Review
,”
Mech. Syst. Signal Process.
,
87
(
A
), pp.
71
90
.
4.
Cowles
,
B. A.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fracture
,
80
(
2–3
), pp.
147
163
.
5.
EL-Aini
,
Y.
, and
Stoner
,
A.
,
1997
, “
High Cycle Fatigue of Turbomachinery Components—Industry Perspective
,”
Proceedings of 33rd Joint Propulsion Conference and Exhibit
,
Seattle, WA
,
July 6–9
,
AIAA
, 97-3365.
6.
Amoo
,
L. M.
,
2013
, “
On the Design and Structural Analysis of Jet Engine Fan Blade Structures
,”
Prog. Aerosp. Sci.
,
60
, pp.
1
11
.
7.
Australian Transportation Safety Bureau
,
2010
, “
Engine Failure, VH-SBA
,” Wagga Wagga Aerodome, New South Wales, Oct. 4, 2009. ATSB Safety Report AO-2009-061, ATSB.
8.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.
9.
Rodriguez
,
A. M.
, and
Kauffman
,
J. L.
,
2019
, “
A Computational Study of Vibration Delocalization in Cyclic Structures Using Adaptive Stiffness Elements
,”
Proceedings of SPIE Smart Structures/NDE 2019
,
Denver, CO
,
Mar. 3–7
,
SPIE
.
10.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
125
(
4
), pp.
623
631
.
11.
Jones
,
K. W.
, and
Cross
,
C. J.
,
2003
, “
Traveling Wave Excitation for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.
12.
Pichot
,
F.
,
Laxalde
,
D.
,
Sinou
,
J. J.
,
Thouverez
,
F.
, and
Lombard
,
J. P.
,
2006
, “
Mistuning Identification for Industrial Blisks Based on the Best Achievable Eigenvector
,”
Comput. Struct.
,
84
(
29–30
), pp.
2033
2049
.
13.
Judge
,
J.
,
Pierre
,
C.
, and
Mehmed
,
O.
,
2001
, “
Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk
,”
ASME J. Turbomach.
,
123
(
4
), pp.
940
950
.
14.
Sanliturk
,
K. Y.
,
Ewins
,
D. J.
, and
Stanbridge
,
A. B.
,
2001
, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
919
929
.
15.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.
16.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.
17.
Choi
,
B. K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
71
90
.
18.
Yu
,
H.
, and
Wang
,
K. W.
,
2007
, “
Piezoelectric Networks for Vibration Suppression of Mistuned Bladed Disks
,”
J. Vib. Acoust.
,
129
(
5
), pp.
559
566
.
19.
Yu
,
H.
, and
Wang
,
K. W.
,
2009
, “
Vibration Suppression of Mistuned Coupled-Blade-Disk Systems Using Piezoelectric Circuitry Network
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
021008
.
20.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2012
, “
Piezoelectric-Based Vibration Reduction of Turbomachinery Bladed Disks Via Resonance Frequency Detuning
,”
AIAA J.
,
50
(
5
), pp.
1137
1144
.
21.
Duffy
,
K. P.
,
Choi
,
B. B.
,
Provenza
,
A. J.
,
Min
,
J. B.
, and
Kray
,
N.
,
2013
, “
Active Piezoelectric Vibration Control of Subscale Composite Fan Blade
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011601
.
22.
Min
,
J. B.
,
Duffy
,
K. P.
,
Choi
,
B. B.
,
Provenza
,
A. J.
, and
Kray
,
N.
,
2013
, “
Numerical Modeling Methodology and Experimental Study for Piezoelectric Vibration Damping Control of Rotating Composite Fan Blades
,”
Comput. Struct.
,
128
, pp.
230
242
.
23.
Institute of Electrical and Electronics Engineers
,
1987
, “
IEEE Standard on Piezoelectricity
,” ANSI/IEEE Std. 176-1987, IEEE,
New York, NY
.
24.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
25.
Hollkamp
,
J. J.
,
1994
, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
49
57
.
26.
Vasques
,
C. M. A.
, and
Rodrigues
,
J. D.
,
2006
, “
Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies
,”
J. Comput. Struct.
,
84
(
22–23
), pp.
1402
1414
.
27.
Aridogan
,
U.
, and
Basdogan
,
I.
,
2015
, “
A Review of Active Vibration and Noise Suppression of Plate-Like Structures With Piezoelectric Transducers
,”
J. Intell. Mater. Syst. Struct.
,
26
(
12
), pp.
1455
1476
.
28.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Bassaler
,
H.
,
2000
, “
Enhanced Semi-passive Damping Using Continuous Switching of a Piezoelectric Device on an Inductor
,”
Proceedings of the SPIE Conference on Smart Structures and Materials 2000
,
Newport Beach, CA
,
Mar. 7–9
, Vol. 3989,
SPIE
, pp.
288
299
.
29.
Kelley
,
C. R.
, and
Kauffman
,
J. L.
,
2017
, “
Optimal Switch Timing for Piezoelectric-Based Semi-active Vibration Reduction Techniques
,”
J. Intell. Mater. Syst. Struct.
,
28
(
16
), pp.
2275
2285
.
30.
Lopp
,
G. K.
, and
Kauffman
,
J. L.
,
2018
, “
Vibration Reduction of Mistuned Bladed Disks Via Piezoelectric-Based Resonance Frequency Detuning
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051007
.
31.
Lopp
,
G. K.
, and
Kauffman
,
J. L.
,
2019
, “
Optimization of the Blade-Dependent Switch Triggers for Reducing Mistuned Blade Disk Vibration Via Piezoelectric-Based Resonance Frequency Detuning
,”
Proceedings of AIAA Scitech 2019
,
San Diego, CA
,
Jan. 7–11
,
AIAA
.
32.
Kovalovs
,
A.
,
Barkanov
,
E.
, and
Gluhihs
,
S.
,
2007
, “
Active Control of Structures Using Macro-fiber Composite (MFC)
,”
J. Phys.: Conf. Ser.
,
93
, p.
012034
.
33.
Lin
,
Y.
, and
Sodano
,
H. A.
,
2009
, “
Fabrication and Electromechanical Characterization of a Piezoelectric Structural Fiber for Multifunctional Composites
,”
Adv. Funct. Mater.
,
19
(
4
), pp.
592
598
.
34.
Kelley
,
C. R.
, and
Kauffman
,
J. L.
,
2018
, “
Optimal Placement and Sizing of Piezoelectric Material for Multiple-Mode Vibration Reduction
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
ASME
, Paper No. GT2018-77025.
35.
Kelley
,
C. R.
, and
Kauffman
,
J. L.
,
2019
, “
Piezoelectric-Based Vibration Reduction on Pre-twisted Blades With Centrifugal Loads
,”
Proceedings of AIAA Scitech 2019
,
San Diego, CA
,
Jan. 7–11
,
AIAA
.
36.
Lopp
,
G. K.
, and
Kauffman
,
J. L.
,
2019
, “
Multi-objective Optimization for Piezoelectric-Based Approaches With Applications Toward Bladed Disks
,” Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition,
ASME
, Paper No. GT2019-91861.
37.
Kelley
,
C. R.
, and
Kauffman
,
J. L.
,
2021
, “
Optimizing Piezoelectric Material Location and Size for Multiple-Mode Vibration Reduction of Turbomachinery Blades
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021007
.
You do not currently have access to this content.