Abstract

Additive manufacturing, such as 3D printing, offers unparalleled opportunities for rapid prototyping of objects, but typically requires simultaneous building of solid supports to minimize deformation and ensure contact with the printing surface. Here, we theoretically and experimentally investigate the concept of material extrusion on an “air bed”—an engineered ultrasonic acoustic field that stabilizes and supports the soft material by contactless radiation pressure force. We study the dynamics of polylactic acid filament—a commonly used material in 3D printing—as it interacts with the acoustic potential during extrusion. We develop a numerical radiation pressure model to determine optimal configurations of ultrasonic transducers to generate acoustic fields and conditions for linear printing. We build a concept prototype that integrates an acoustic levitation array with a 3D printer and use this device to demonstrate linear extrusion on an acoustic air bed. Our results indicate that controlled interactions between acoustic fields and soft materials could offer alternative support mechanisms in additive manufacturing with potential benefits such as less material waste, fewer surface defects, and reduced material processing time.

References

1.
Bruus
,
H.
,
2012
, “
Acoustofluidics 7: The Acoustic Radiation Force on Small Particles
,”
Lab Chip
,
12
(
6
), pp.
1014
1021
.
2.
Settnes
,
M.
, and
Bruus
,
H.
,
2012
, “
Forces Acting on a Small Particle in an Acoustical Field in a Viscous Fluid
,”
Phys. Rev. E
,
85
(
1 Pt 2
), p.
016327
.
3.
Andrade
,
M. A. B.
,
Bernassau
,
A. L.
, and
Adamowski
,
J. C.
,
2016
, “
Acoustic Levitation of a Large Solid Sphere
,”
Appl. Phys. Lett.
,
109
(
4
), p.
044101
.
4.
Glynne-Jones
,
P.
,
Mishra
,
P. P.
,
Boltryk
,
R. J.
, and
Hill
,
M.
,
2013
, “
Efficient Finite Element Modeling of Radiation Forces on Elastic Particles of Arbitrary Size and Geometry
,”
J. Acoust. Soc. Am.
,
133
(
4
), pp.
1885
1893
.
5.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), pp.
1
13
.
6.
Shi
,
Q.
,
Di
,
W.
,
Dong
,
D.
,
Yap
,
L. W.
,
Li
,
L.
,
Zang
,
D.
, and
Cheng
,
W.
,
2019
, “
A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly
,”
ACS Nano
,
13
(
5
), pp.
5243
5250
.
7.
Marzo
,
A.
,
Barnes
,
A.
, and
Drinkwater
,
B. W.
,
2017
, “
TinyLev: A Multi-Emitter Single-Axis Acoustic Levitator
,”
Rev. Sci. Instrum.
,
88
(
8
), p.
085105
.
8.
Marzo
,
A.
,
Corkett
,
T.
, and
Drinkwater
,
B. W.
,
2018
, “
Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
65
(
1
), pp.
102
111
.
9.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
,
2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,”
Nat. Commun.
,
6
(
1
), p.
8661
.
10.
Vandaele
,
V.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2005
, “
Non-Contact Handling in Microassembly: Acoustical Levitation
,”
Precis. Eng.
,
29
(
4
), pp.
491
505
.
11.
Wu
,
H.
,
Zhu
,
J.
,
Wang
,
X.
, and
Li
,
Y.
,
2021
, “
Design of Ultrasonic Standing Wave Levitation Support for Three-Dimensional Printed Filaments
,”
J. Acoust. Soc. Am.
,
149
(
4
), p.
2848
2853
.
12.
Trinh
,
E. H.
,
1985
, “
Compact Acoustic Levitation Device for Studies in Fluid Dynamics and Material Science in the Laboratory and Microgravity
,”
Rev. Sci. Instrum.
,
56
(
11
), pp.
2059
2065
.
13.
Andrade
,
M. A. B.
,
Okina
,
F. T. A.
,
Bernassau
,
A. L.
, and
Adamowski
,
J. C.
,
2017
, “
Acoustic Levitation of an Object Larger Than the Acoustic Wavelength
,”
J. Acoust. Soc. Am.
,
141
(
6
), p.
4148
4154
.
14.
Kandemir
,
M. H.
, and
Çalışkan
,
M.
,
2016
, “
Standing Wave Acoustic Levitation on an Annular Plate
,”
J. Sound Vib.
,
382
, pp.
227
237
.
15.
Zhao
,
S.
, and
Wallaschek
,
J.
,
2011
, “
A Standing Wave Acoustic Levitation System for Large Planar Objects
,”
Archive of Applied Mechanics
,
81
(
2
), pp.
123
139
.
16.
Baresch
,
D.
,
Thomas
,
J.-L.
, and
Marchiano
,
R.
,
2016
, “
Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers
,”
Phys. Rev. Lett.
,
116
(
2
), p.
024301
.
17.
Xie
,
W. J.
,
Cao
,
C. D.
,
,
Y. J.
,
Hong
,
Z. Y.
, and
Wei
,
B.
,
2006
, “
Acoustic Method for Levitation of Small Living Animals
,”
Appl. Phys. Lett.
,
89
(
21
), p.
214102
.
18.
Priego-Capote
,
F.
, and
de Castro
,
L.
,
2006
, “
Ultrasound-Assisted Levitation: Lab-on-a-Drop
,”
Trends Anal. Chem.
,
25
(
9
), pp.
856
867
.
19.
Watanabe
,
A.
,
Hasegawa
,
K.
, and
Abe
,
Y.
,
2018
, “
Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation
,”
Sci. Rep.
,
8
(
1
), p.
10221
.
20.
Foresti
,
D.
,
Nabavi
,
M.
,
Klingauf
,
M.
,
Ferrari
,
A.
, and
Poulikakos
,
D.
,
2013
, “
Acoustophoretic Contactless Transport and Handling of Matter in Air
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
31
), pp.
12549
12554
.
21.
Nikolaeva
,
A. V.
,
Sapozhnikov
,
O. A.
, and
Bailey
,
M. R.
,
2016
, “
Acoustic Radiation Force of a Quasi-Gaussian Beam on an Elastic Sphere in a Fluid
,”
IEEE Int. Ultrason. Symp.
, pp.
1
4
.
22.
Xie
,
W. J.
, and
Wei
,
B.
,
2001
, “
Parametric Study of Single-Axis Acoustic Levitation
,”
Appl. Phys. Lett.
,
79
(
6
), pp.
881
883
.
23.
Baresch
,
D.
, and
Garbin
,
V.
,
2020
, “
Acoustic Trapping of Microbubbles in Complex Environments and Controlled Payload Release
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
27
), pp.
15490
15496
.
24.
Santesson
,
S.
, and
Nilsson
,
S.
,
2004
, “
Airborne Chemistry: Acoustic Levitation in Chemical Analysis
,”
Anal. Bioanal. Chem.
,
378
(
7
), pp.
1704
1709
.
25.
Ezcurdia
,
I.
,
Morales
,
R.
,
Andrade
,
M. A. B.
, and
Marzo
,
A.
,
2022
, “
LeviPrint: Contactless Fabrication Using Full Acoustic Trapping of Elongated Parts
,”
ACM SIGGRAPH 2022 Conference Proceedings
,
Vancouver, BC, Canada
,
Aug. 7–11
, pp.
1
9
.
26.
Foresti
,
D.
,
Bjelobrk
,
N.
,
Nabavi
,
M.
, and
Poulikakos
,
D.
,
2011
, “
Investigation of a Line-Focused Acoustic Levitation for Contactless Transport of Particles
,”
J. Appl. Phys.
,
109
(
9
), p.
093503
.
27.
Andrade
,
M. A. B.
,
Pérez
,
N.
, and
Adamowski
,
J. C.
,
2018
, “
Review of Progress in Acoustic Levitation
,”
Braz. J. Phys.
,
48
(
2
), pp.
190
213
.
28.
Xie
,
W. J.
, and
Wei
,
B.
,
2003
, “
Temperature Dependence of Single-Axis Acoustic Levitation
,”
J. Appl. Phys.
,
93
(
5
), pp.
3016
3021
.
29.
Andrade
,
M. A. B.
,
Ramos
,
T. S.
,
Okina
,
F. T. A.
, and
Adamowski
,
J. C.
,
2014
, “
Nonlinear Characterization of a Single-Axis Acoustic Levitator
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
045125
.
30.
Morris
,
R. H.
,
Dye
,
E. R.
,
Docker
,
P.
, and
Newton
,
M. I.
,
2019
, “
Beyond the Langevin Horn: Transducer Arrays for the Acoustic Levitation of Liquid Drops
,”
Phys. Fluids
,
31
(
10
), p.
101301
.
31.
Xie
,
W. J.
, and
Wei
,
B.
,
2002
, “
Dependence of Acoustic Levitation Capabilities on Geometric Parameters
,”
Phys. Rev. E
,
66
(
2 Pt 2
), p.
026605
.
32.
Karlsen
,
J. T.
, and
Bruus
,
H.
,
2015
, “
Forces Acting on a Small Particle in an Acoustical Field in a Thermoviscous Fluid
,”
Phys. Rev. E
,
92
(
4
), pp.
043010
043031
.
33.
Stein
,
M.
,
Keller
,
S.
,
Luo
,
Y.
, and
Ilic
,
O.
,
2022
, “
Shaping Contactless Radiation Forces Through Anomalous Acoustic Scattering
,”
Nat. Commun.
,
13
(
1
), p.
6533
.
You do not currently have access to this content.