Abstract
A mathematical model is developed based on the thin-walled beams theory for free vibration analysis of nano/micro scale beams having nonlocal properties and arbitrary cross sections. Constitutive relations are defined by using two-phase local–nonlocal constitutive formulation. Equations of motion are derived by use of Hamilton‘s principle. Both the local and nonlocal part of the model is solved by the displacement-based finite element method. Numerical results are obtained and examined for nonlocal box beams and collapsed carbon nanotubes. In general, it is observed that the natural frequency decreases by increasing the nonlocal parameter or the volume fraction of the nonlocal part.
Issue Section:
Research Papers
References
1.
Timoshenko
, S. P.
, and Goodier
, J. N.
, 1951
, Theory of Elasticity
, McGraw-Hill
, New York
.2.
Vlasov
, V. Z.
, 1961
, Thin Walled Elastic Beams
, National Science Foundation
, Washington, DC
.3.
Gjelsvik
, A.
, 1981
, The Theory of Thin-Walled Bars
, Wiley
, New York
.4.
Librescu
, L.
, and Song
, O.
, 2005
, Thin-walled Composite Beams: Theory and Application
, Springer
, The Netherlands
.5.
Kim
, N. I.
, and Kim
, M. Y.
, 2005
, “Exact Dynamic-Static Stiffness Matrices of Non-Symmetric Thin-Walled Beams Considering Coupled Shear Deformation Effects
,” Thin Walled Struct.
, 43
(5
), pp. 701
–734
. 6.
Choi
, S. C.
, Park
, J. S.
, and Kim
, J. H.
, 2007
, “Vibration Control of Pre-Twisted Rotating Composite Thin-Walled Beams With Piezoelectric Fiber Composites
,” J. Sound Vib.
, 300
(1–2
), pp. 176
–196
. 7.
Vo
, T. P.
, and Lee
, J.
, 2009
, “Flexural-Torsional Coupled Vibration and Buckling of Thin-Walled Open Section Composite Beams Using Shear-Deformable Beam Theory
,” Int. J. Mech. Sci.
, 51
(9–10
), pp. 631
–641
. 8.
Pagani
, A.
, Boscolo
, M.
, Banerjee
, J. R.
, and Carrera
, E.
, 2013
, “Exact Dynamic Stiffness Elements Based on One-Dimensional Higher-Order Theories for Free Vibration Analysis of Solid and Thin-Walled Structures
,” J. Sound Vib.
, 332
(23
), pp. 6104
–6127
. 9.
Latalski
, J.
, Warminski
, J.
, and Rega
, G.
, 2017
, “Bending-twisting Vibrations of a Rotating Hub–Thin-Walled Composite Beam System
,” Math. Mech. Solids
, 22
(6
), pp. 1303
–1325
. 10.
Eydani Asl
, M.
, Niezrecki
, C.
, Sherwood
, J.
, and Avitabile
, P.
, 2017
, “Vibration Prediction of Thin-Walled Composite i-Beams Using Scaled Models
,” Thin Walled Struct.
, 113
, pp. 151
–161
. 11.
Eken
, S.
, 2019
, “Free Vibration Analysis of Composite Aircraft Wings Modeled as Thin-Walled Beams With Naca Airfoil Sections
,” Thin Walled Struct.
, 139
, pp. 362
–371
. 12.
Xu
, X.
, Carrera
, E.
, Augello
, R.
, Daneshkhah
, E.
, and Yang
, H.
, 2021
, “Benchmarks for Higher-Order Modes Evaluation in the Free Vibration Response of Open Thin-Walled Beams due to the Cross-Sectional Deformations
,” Thin Walled Struct.
, 166
, p. 107965
. 13.
Shin
, D.
, Choi
, S.
, Jang
, G.-W.
, and Kim
, Y. Y.
, 2018
, “Higher-Order Beam Theory for Static and Vibration Analysis of Composite Thin-Walled box Beam
,” Compos. Struct.
, 206
, pp. 140
–154
. 14.
Forcier
, L.-C.
, and Joncas
, S.
, 2022
, “Development of a Cross-Sectional Finite Element for the Analysis of Thin-Walled Composite Beams Like Wind Turbine Blades
,” Wind Eng.
, 47
(1), pp. 157
–174
. 15.
Daraei
, B.
, Shojaee
, S.
, and Hamzehei-Javaran
, S.
, 2022
, “Free Vibration Analysis of Composite Laminated Beams with Curvilinear Fibers via Refined Theories
,” Mech. Adv. Mater. Struc.
, 29
(6
), pp. 840
–849
. 16.
Høgsberg
, J.
, Hoffmeyer
, D.
, and Ejlersen
, C.
, 2015
, “Damping of Torsional Beam Vibrations by Control of Warping Displacement
,” ASME J. Vib. Acoust.
, 138
(1
), p. 014501
. 17.
Banerjee
, J. R.
, Kennedy
, D.
, and Elishakoff
, I.
, 2022
, “Further Insights Into the Timoshenko–Ehrenfest Beam Theory
,” ASME J. Vib. Acoust.
, 144
(6
), p. 061011
. 18.
Fazelzadeh
, S. A.
, Malekzadeh
, P.
, Zahedinejad
, P.
, and Hosseini
, M.
, 2007
, “Vibration Analysis of Functionally Graded Thin-Walled Rotating Blades Under High Temperature Supersonic Flow Using the Differential Quadrature Method
,” J. Sound Vib.
, 306
(1–2
), pp. 333
–348
. 19.
Piovan
, M. T.
, and Sampaio
, R.
, 2008
, “Vibrations of Axially Moving Flexible Beams Made of Functionally Graded Materials
,” Thin Walled Structures
, 46
(2
), pp. 112
–121
. 20.
Ziane
, N.
, Meftah
, S. A.
, Belhadj
, H. A.
, Tounsi
, A.
, and Bedia
, E. A. A.
, 2013
, “Free Vibration Analysis of Thin and Thick-Walled FGM Box Beams
,” Int. J. Mech. Sci.
, 66
, pp. 273
–282
. 21.
Nguyen
, T. T.
, Kim
, N. I.
, and Lee
, J.
, 2016
, “Free Vibration of Thin-Walled Functionally Graded Open-Section Beams
,” Composites Part B
, 95
, pp. 105
–116
. 22.
Kim
, N. I.
, and Lee
, J.
, 2017
, “Coupled Vibration Characteristics of Shear Flexible Thin-Walled Functionally Graded Sandwich i-Beams
,” Composites Part B
, 110
, pp. 229
–247
. 23.
Nguyen
, N. D.
, Nguyen
, T. K.
, Vo
, T. P.
, Nguyen
, T. N.
, and Lee
, S.
, 2019
, “Vibration and Buckling Behaviours of Thin-Walled Composite and Functionally Graded Sandwich i-Beams
,” Composites Part B
, 166
, pp. 414
–427
. 24.
Rajasekaran
, S.
, and Khaniki
, H. B.
, 2019
, “Bi-directional Functionally Graded Thin-Walled non-Prismatic Euler Beams of Generic Open-Closed Cross Section Part ii: Static Stability and Free Vibration Studies
,” Thin Walled Struct.
, 141
, pp. 646
–674
. 25.
Garg
, A.
, Chalak
, H.
, Zenkour
, A. M.
, Belarbi
, M.-O.
, and Houari
, M.-S.-A.
, 2021
, “A Review of Available Theories and Methodologies for the Analysis of Nano Isotropic, Nano Functionally Graded, and CNT Reinforced Nanocomposite Structures
,” Arch. Comput. Meth. Eng.
, 29
(4), pp. 1
–34
. 26.
Beni
, Z. T.
, and Beni
, Y. T.
, 2022
, “Dynamic Stability Analysis of Size-Dependent Viscoelastic/Piezoelectric Nano-Beam
,” Int. J. Struct. Stab. Dyn.
, 22
(5
), p. 2250050
. 27.
Estabragh
, E. R.
, and Baradaran
, G. H.
, 2021
, “Large Amplitude Free Vibration Analysis of Nanobeams Based on Modified Couple Stress Theory
,” Int. J. Struct. Stab. Dyn.
, 21
(9
), p. 2150129
. 28.
Faghidian
, S. A.
, and Elishakoff
, I.
, 2022
, “Wave Propagation in Timoshenko–Ehrenfest Nanobeam: A Mixture Unified Gradient Theory
,” ASME J. Vib. Acoust.
, 144
(6
), p. 061005
. 29.
Khaniki
, H. B.
, 2018
, “On Vibrations of Nanobeam Systems
,” Int. J. Eng. Sci.
, 124
, pp. 85
–103
. 30.
Khaniki
, H. B.
, 2019
, “On Vibrations of FG Nanobeams
,” Int. J. Eng. Sci.
, 135
, pp. 23
–36
. 31.
Khaniki
, H. B.
, Hosseini-Hashemi
, S.
, and Khaniki
, H. B.
, 2018
, “Dynamic Analysis of Nano-Beams Embedded in a Varying Nonlinear Elastic Environment Using Eringen’s Two-Phase Local/Nonlocal Model
,” Eur. Phys. J. Plus
, 133
(7
), pp. 1
–16
. 32.
Khaniki
, H. B.
, 2018
, “Vibration Analysis of Rotating Nanobeam Systems Using Eringen's Two-Phase Local/Nonlocal Model
,” Phys. E
, 99
, pp. 310
–319
. 33.
Ghane
, M.
, Saidi
, A. R.
, and Bahaadini
, R.
, 2020
, “Vibration of Fluid-Conveying Nanotubes Subjected to Magnetic Field Based on the Thin-Walled Timoshenko Beam Theory
,” Appl. Math. Model.
, 80
, pp. 65
–83
. 34.
Soltani
, M.
, Atoufi
, F.
, Mohri
, F.
, Dimitri
, R.
, and Tornabene
, F.
, 2021
, “Nonlocal Elasticity Theory for Lateral Stability Analysis of Tapered Thin-Walled Nanobeams With Axially Varying Materials
,” Thin Walled Struct.
, 159
, p. 107268
. 35.
Günay
, M. G.
, 2022
, “Buckling Analysis of Thin-Walled Beams by Two-Phase Local–Nonlocal Integral Model
,” Iran. J. Sci. Technol., Trans. Mech. Eng.
, pp. 1
–13
. 36.
Rhoads
, J. F.
, Cho
, H.
, Judge
, J.
, Krylov
, S.
, Shaw
, S. W.
, and Younis
, M.
, 2017
, “Special Section on the Dynamics of Mems and Nems
,” ASME J. Vib. Acoust.
, 139
(4
), p. 040301
. 37.
Dick
, N.
, Grutzik
, S.
, Wallin
, C. B.
, Robert Ilic
, B.
, Krylov
, S.
, and Zehnder
, A. T.
, 2018
, “Actuation of Higher Harmonics in Large Arrays of Micromechanical Cantilevers for Expanded Resonant Peak Separation
,” ASME J. Vib. Acoust.
, 140
(5
), p. 051013
. 38.
Chopra
, N. G.
, Benedict
, L. X.
, Crespi
, V. H.
, Cohen
, M. L.
, Louie
, S. G.
, and Zettl
, A.
, 1995
, “Fully Collapsed Carbon Nanotubes
,” Nature
, 377
(6545
), pp. 135
–138
. 39.
Eringen
, A. C.
, 1978
, Nonlocal Continuum Mechanics and Some Applications, in Nonlinear Equations in Physics and Mathematics
, Springer
, Dordrecht
.40.
Polizzotto
, C.
, 2001
, “Nonlocal Elasticity and Related Variational Principles
,” Int. J. Solids Struct.
, 38
(42–43
), pp. 7359
–7380
. 41.
Günay
, M. G.
, and Timarci
, T.
, 2017
, “Static Analysis of Thin-Walled Laminated Composite Closed-Section Beams With Variable Stiffness
,” Compos. Struct.
, 182
, pp. 67
–78
. 42.
Günay
, M. G.
, and Timarci
, T.
, 2019
, “Stresses in Thin-Walled Composite Laminated Box-Beams With Curvilinear Fibers: Antisymmetric and Symmetric Fiber Paths
,” Thin Walled Struct.
, 138
, pp. 170
–182
. 43.
Wang
, Q.
, and Varadan
, V. K.
, 2006
, “Vibration of Carbon Nanotubes Studied Using Nonlocal Continuum Mechanics
,” Smart Mater. Struct.
, 15
(2
), pp. 659
–666
. 44.
Elliott
, J. A.
, Sandler
, J. K.
, Windle
, A. H.
, Young
, R. J.
, and Shaffer
, M. S.
, 2004
, “Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent
,” Phys. Rev. Lett.
, 92
(9
), p. 95501
. 45.
Han
, Z. D.
, Ling
, C. C.
, Guo
, Q. K.
, Lu
, H. P.
, Sui
, H. G.
, Yin
, J. J.
, and Deng
, L. J.
, 2015
, “Influence of Filling Atoms on Radial Collapse and Elasticity of Carbon Nanotubes Under Hydrostatic Pressure
,” Sci. Bull.
, 60
(17
), pp. 1509
–1516
. 46.
Günay
, M. G.
, 2021
, “Free Transverse Vibration of Nickel Coated Carbon Nanotubes
,” Int. J. Struct. Stab. Dyn.
, 21
(6
), p. 2150085
. Copyright © 2023 by ASME
You do not currently have access to this content.