Abstract

Acoustic black holes (ABHs) have shown great potential in vibration and noise control. Merging the ABH effect and the metamaterial can be a more efficient approach for vibration control. The aim of this article is to study the dynamics of a metamaterial plate with crossed acoustic black holes. The band gap properties of the infinite structure and the influence of the design variables are investigated by using the finite element method and the Floquet–Bloch theorem. The vibration transmission and frequency response functions of the finite structure are presented to reveal the vibration attenuation mechanism. The effect of elastic boundary conditions on the vibration properties of the metamaterial plate is also studied. Numerical results demonstrate that the vibration is remarkably weakened due to the band gap and local modes induced by the ABH effect. Then, experimental validation is given by using 3D printing techniques. Finally, we study the multi-objective optimal design problem of the ABH plate to reduce the vibration amplitude and the structural mass simultaneously. Optimization results provide more options for the trade-off design of metamaterial plates between the lightweight design and vibration suppression capability.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
3.
Wang
,
Q.
,
Li
,
J.
,
Zhang
,
Y.
,
Xue
,
Y.
, and
Li
,
F.
,
2021
, “
Bandgap Properties in Metamaterial Sandwich Plate With Periodically Embedded Plate-Type Resonators
,”
Mech. Syst. Signal. Process.
,
151
, p.
107375
.
4.
Tang
,
L.
,
Cheng
,
L.
, and
Chen
,
K.
,
2021
, “
Complete Sub-Wavelength Flexural Wave Band Gaps in Plates With Periodic Acoustic Black Holes
,”
J. Sound. Vib.
,
502
, p.
116102
.
5.
He
,
M.-X.
,
Lyu
,
X.
,
Zhai
,
Y.
,
Tang
,
Y.
,
Yang
,
T.
, and
Ding
,
Q.
,
2021
, “
Multi-Objective Optimal Design of Periodically Stiffened Panels for Vibration Control Using Data-Driven Optimization Method
,”
Mech. Syst. Signal. Process.
,
160
, p.
107872
.
6.
Song
,
Y.
,
Feng
,
L.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2015
, “
Reduction of the Sound Transmission of a Periodic Sandwich Plate Using the Stop Band Concept
,”
Compos. Struct.
,
128
, pp.
428
436
.
7.
Wang
,
T.
,
Sheng
,
M.
, and
Qin
,
Q.
,
2017
, “
Sound Transmission Loss Through Metamaterial Plate With Lateral Local Resonators in the Presence of External Mean Flow
,”
J. Acoustic. Soc. Am.
,
141
(
2
), pp.
1161
1169
.
8.
Song
,
Y.
,
Wen
,
J.
,
Tian
,
H.
,
Lu
,
X.
,
Li
,
Z.
, and
Feng
,
L.
,
2020
, “
Vibration and Sound Properties of Metamaterial Sandwich Panels With Periodically Attached Resonators: Simulation and Experiment Study
,”
J. Sound. Vib.
,
489
, p.
115644
.
9.
Liu
,
Z.
,
Rumpler
,
R.
, and
Feng
,
L.
,
2018
, “
Broadband Locally Resonant Metamaterial Sandwich Plate for Improved Noise Insulation in the Coincidence Region
,”
Compos. Struct.
,
200
, pp.
165
172
.
10.
Tang
,
L.
, and
Cheng
,
L.
,
2017
, “
Ultrawide Band Gaps in Beams With Double-Leaf Acoustic Black Hole Indentations
,”
J. Acoust. Soc. Am.
,
142
, pp.
2802
2807
.
11.
Tang
,
L.
, and
Cheng
,
L.
,
2017
, “
Broadband Locally Resonant Band Gaps in Periodic Beam Structures With Embedded Acoustic Black Holes
,”
J. Appl. Phys.
,
121
(
19
), p.
194901
.
12.
Tang
,
L.
, and
Cheng
,
L.
,
2019
, “
Periodic Plates With Tunneled Acoustic-Black-Holes for Directional Band Gap Generation
,”
Mech. Syst. Signal. Process.
,
133
, p.
106257
.
13.
Zouari
,
S.
,
Genevaux
,
J.-M.
,
Brocail
,
J.
, and
Ablitzer
,
F.
,
2017
, “
Band Gap Formation in Thin Plates With a Periodic Array of Resonators
,”
Mech. Indust.
,
18
(
3
), p.
304
.
14.
Poggetto
,
V. F. D.
,
2021
, “
Widening Wave Band Gaps of Periodic Plates Via Shape Optimization Using Spatial Fourier Coefficients
,”
Mech. Syst. Signal. Process.
,
147
, p.
107098
.
15.
Pelat
,
A.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2020
, “
The Acoustic Black Hole: A Review of Theory and Applications
,”
J. Sound. Vib.
,
476
, p.
115316
.
16.
Bowyer
,
E. P.
, and
Krylov
,
V. V.
,
2014
, “
Experimental Investigation of Damping Flexural Vibrations in Glass Fibre Composite Plates Containing One- and Two-Dimensional Acoustic Black Holes
,”
Compos. Struct.
,
107
, pp.
406
415
.
17.
Ji
,
H.
,
Liang
,
Y.
,
Qiu
,
J.
,
Cheng
,
L.
, and
Wu
,
Y.
,
2019
, “
Enhancement of Vibration Based Energy Harvesting Using Compound Acoustic Black Holes
,”
Mech. Syst. Signal. Process.
,
132
, pp.
441
456
.
18.
Li
,
X.
, and
Ding
,
Q.
,
2018
, “
Analysis on Vibration Energy Concentration of the One-Dimensional Wedge-Shaped Acoustic Black Hole Structure
,”
J. Intel. Mater. Syst. Struct.
,
29
(
10
), pp.
2137
2148
.
19.
Zhao
,
L.
, and
Semperlotti
,
F.
,
2017
, “
Embedded Acoustic Black Holes for Semi-Passive Broadband Vibration Attenuation in Thin-Walled Structures
,”
J. Sound. Vib.
,
388
, pp.
42
52
.
20.
Ma
,
L.
,
Zhou
,
T.
, and
Cheng
,
L.
,
2022
, “
Acoustic Black Hole Effects in Thin-Walled Structures: Realization and Mechanisms
,”
J. Sound. Vib.
,
525
, p.
116785
.
21.
Li
,
X.
, and
Ding
,
Q.
,
2019
, “
Sound Radiation of a Beam With a Wedge-Shaped Edge Embedding Acoustic Black Hole Feature
,”
J. Sound. Vib.
,
439
, pp.
287
299
.
22.
Ma
,
L.
, and
Cheng
,
L.
,
2019
, “
Sound Radiation and Transonic Boundaries of a Plate With an Acoustic Black Hole
,”
J. Acoustic. Soc. Am.
,
145
(
1
), pp.
164
172
.
23.
Ma
,
L.
, and
Cheng
,
L.
,
2020
, “
Numerical and Experimental Benchmark Solutions on Vibration and Sound Radiation of an Acoustic Black Hole Plate
,”
Appl. Acoustic.
,
163
, p.
107223
.
24.
Huang
,
W.
,
Ji
,
H.
,
Qiu
,
J.
, and
Cheng
,
L.
,
2016
, “
Wave Energy Focalization in a Plate With Imperfect Two-Dimensional Acoustic Black Hole Indentation
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061004
.
25.
Huang
,
W.
,
Ji
,
H.
,
Qiu
,
J.
, and
Cheng
,
L.
,
2018
, “
Analysis of Ray Trajectories of Flexural Waves Propagating Over Generalized Acoustic Black Hole Indentations
,”
J. Sound. Vib.
,
417
, pp.
216
226
.
26.
Tang
,
L.
, and
Cheng
,
L.
,
2020
, “
Impaired Sound Radiation in Plates With Periodic Tunneled Acoustic Black Holes
,”
Mech. Syst. Signal. Process.
,
135
, p.
106410
.
27.
He
,
M.-X.
, and
Ding
,
Q.
,
2020
, “
Data-Driven Optimization of the Periodic Beam With Multiple Acoustic Black Holes
,”
J. Sound. Vib.
,
493
, p.
115816
.
28.
Deng
,
J.
,
Guasch
,
O.
,
Maxit
,
L.
, and
Zheng
,
L.
,
2021
, “
Annular Acoustic Black Holes to Reduce Sound Radiation From Cylindrical Shells
,”
Mech. Syst. Signal. Process.
,
158
, p.
107722
.
29.
Tang
,
L.
,
Gao
,
N.
,
Xu
,
J.
,
Chen
,
K.
, and
Cheng
,
L.
,
2021
, “
A Light-Weight Periodic Plate With Embedded Acoustic Black Holes and Bandgaps for Broadband Sound Radiation Reduction
,”
J. Acoustic. Soc. Am.
,
150
(
5
), pp.
3532
3543
.
30.
He
,
M.-X.
,
Xiong
,
F.-R.
, and
Sun
,
J.-Q.
,
2017
, “
Multi-Objective Optimization of Elastic Beams for Noise Reduction
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051014
.
31.
He
,
M.-X.
, and
Sun
,
J.-Q.
,
2018
, “
Multi-Objective Structural-Acoustic Optimization of Beams Made of Functionally Graded Materials
,”
Compos. Struct.
,
185
, pp.
221
228
.
32.
Ji
,
H.
,
Han
,
B.
,
Cheng
,
L.
,
Inman
,
D. J.
, and
Qiu
,
J.
,
2022
, “
Frequency Attenuation Band With Low Vibration Transmission in a Finite-size Plate Strip Embedded With 2d Acoustic Black Holes
,”
Mech. Syst. Signal. Process.
,
163
, p.
108149
.
33.
Denli
,
H.
, and
Sun
,
J. Q.
,
2007
, “
Optimization of Boundary Supports for Sound Radiation Reduction of Vibrating Structures
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011007
.
34.
Wang
,
X.
,
Luo
,
X.
,
Zhao
,
H.
, and
Huang
,
Z.
,
2018
, “
Acoustic Perfect Absorption and Broadband Insulation Achieved by Double-Zero Metamaterials
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021901
.
35.
Huang
,
W.
,
Zhang
,
H.
,
Inman
,
D. J.
,
Qiu
,
J.
,
Cesnik
,
C. E. S.
, and
Ji
,
H.
,
2019
, “
Low Reflection Effect by 3D Printed Functionally Graded Acoustic Black Holes
,”
J. Sound. Vib.
,
450
, pp.
96
108
.
36.
Guo
,
Z.
,
Sheng
,
M.
, and
Pan
,
J.
,
2017
, “
Effect of Boundary Conditions on the Band-Gap Properties of Flexural Waves in a Periodic Compound Plate
,”
J. Sound. Vib.
,
395
, pp.
102
126
.
37.
Fahy
,
F.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration
,
Academic Press
,
Oxford
.
38.
Olhoff
,
N.
,
Niu
,
B.
, and
Cheng
,
G.
,
2012
, “
Optimum Design of Band-Gap Beam Structures
,”
Int. J. Solids. Struct.
,
49
(
22
), pp.
3158
3169
.
39.
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Vibration of Flexible Structures Under Nonlinear Boundary Conditions
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111006
.
You do not currently have access to this content.