Abstract

In this article, an energy-based statistical linearization method (SL) is proposed to simulate a nonlinear dynamic model of spur gear pair. The gear pair operates under combined deterministic and random loads, and both backlash and time-varying mesh stiffness are considered in the dynamic model. The equivalent linear function approximates the teeth backlash nonlinearity in the gear model. The energy-based linearization, which minimizes the error in potential energy between the original and equivalent linear systems, is used. Simulations are conducted on a gear pair, and the effect of the input torque on the dynamic response of the gear pair is then examined. The results demonstrate that for high input torque, the system operates in the linear range. For low input torque, the results are not similar to the original because the system became strongly nonlinear. Monte Carlo simulations were carried out to verify the accuracy of the presented method.

References

1.
Shi
,
Z.
, and
Li
,
S.
,
2022
, “
Nonlinear Dynamics of Hypoid Gear With Coupled Dynamic Mesh Stiffness
,”
Mech. Mach. Theory
,
168
, p.
104589
.
2.
Wang
,
J.
,
Li
,
R.
, and
Peng
,
X.
,
2003
, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.
3.
Marafona
,
J. D.
,
Marques
,
P. M.
,
Martins
,
R. C.
, and
Seabra
,
J. H.
,
2021
, “
Mesh Stiffness Models for Cylindrical Gears: A Detailed Review
,”
Mech. Mach. Theory
,
166
, p.
104472
.
4.
Zhang
,
Y.
, and
Spanos
,
P. D.
,
2020
, “
Efficient Response Determination of a Mdof Gear Model Subject to Combined Periodic and Stochastic Excitations
,”
Int. J. Non-Linear Mech.
,
120
, p.
103378
.
5.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040804
.
6.
Philippe
,
V.
,
2012
, “On the Modelling of Spur and Helical Gear Dynamic Behaviour,”
Mechanical Engineering
, p.
75
.
7.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.
8.
Wang
,
J.
,
Yang
,
J.
,
Lin
,
Y.
, and
He
,
Y.
,
2022
, “
Analytical Investigation of Profile Shifts on the Mesh Stiffness and Dynamic Characteristics of Spur Gears
,”
Mech. Mach. Theory
,
167
, p.
104529
.
9.
Liu
,
P.
,
Zhu
,
L.
,
Gou
,
X.
,
Shi
,
J.
, and
Jin
,
G.
,
2021
, “
Modeling and Analyzing of Nonlinear Dynamics for Spur Gear Pair With Pitch Deviation Under Multi-state Meshing
,”
Mech. Mach. Theory
,
163
, p.
104378
.
10.
Neriya
,
S.
,
Bhat
,
R.
, and
Sankar
,
T.
,
1988
, “
On the Dynamic Response of a Helical Geared System Subjected to a Static Transmission Error in the Form of Deterministic and Filtered White Noise Inputs
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
4
), pp.
501
506
.
11.
Naess
,
A.
,
Kolnes
,
F.
, and
Mo
,
E.
,
2007
, “
Stochastic Spur Gear Dynamics by Numerical Path Integration
,”
J. Sound Vib.
,
302
(
4–5
), pp.
936
950
.
12.
Hasnijeh
,
S. G.
,
Poursina
,
M.
,
Leira
,
B. J.
,
Karimpour
,
H.
, and
Chai
,
W.
,
2019
, “
Stochastic Dynamics of a Nonlinear Time-Varying Spur Gear Model Using an Adaptive Time-Stepping Path Integration Method
,”
J. Sound Vib.
,
447
, pp.
170
185
.
13.
Kumar
,
P.
, and
Narayanan
,
S.
,
2010
, “
Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011004
.
14.
Lu
,
J.-W.
,
Zeng
,
F.-L.
,
Xin
,
J.-Y.
,
Miao
,
E.-M.
, and
Liu
,
M.-J.
,
2011
, “
Influences of Stochastic Perturbation of Parameters on Dynamic Behavior of Gear System
,”
J. Mech. Sci. Technol.
,
25
(
7
), pp.
1667
1673
.
15.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Courier Corporation
,
Chelmsford, MA
.
16.
Booton
,
R. C.
,
1954
, “
Nonlinear Control Systems With Random Inputs
,”
IRE Trans. Circuit Theory
,
1
(
1
), pp.
9
18
.
17.
Br¨uckner
,
A.
, and
Lin
,
Y.
,
1987
, “
Generalization of the Equivalent Linearization Method for Non-linear Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
22
(
3
), pp.
227
235
.
18.
Elishakoff
,
I.
,
Fang
,
J.
, and
Caimi
,
R.
,
1995
, “
Random Vibration of a Nonlinearly Deformed Beam by a New Stochastic Linearization Technique
,”
Int. J. Solids Struct.
,
32
(
11
), pp.
1571
1584
.
19.
Sobiechowski
,
C.
, and
Socha
,
L.
,
2000
, “
Statistical Linearization of the Duffing Oscillator Under Non-Gaussian External Excitation
,”
J. Sound Vib.
,
231
(
1
), pp.
19
35
.
20.
Tobe
,
T.
, and
Sato
,
K.
,
1977
, “
Statistical Analysis of Dynamic Loads on Spur Gear Teeth
,”
Bull. JSME
,
20
(
145
), pp.
882
889
.
21.
Tobe
,
T.
,
Sato
,
K.
, and
Takatsu
,
N.
,
1977
, “
Statistical Analysis of Dynamic Loads on Spur Gear Teeth: Experimental Study
,”
Bull. JSME
,
20
(
148
), pp.
1315
1320
.
22.
Yang
,
J.
,
2013
, “
Vibration Analysis on Multi-mesh Gear-Trains Under Combined Deterministic and Random Excitations
,”
Mech. Mach. Theory
,
59
, pp.
20
33
.
23.
Kahnamouei
,
J. T.
, and
Yang
,
J.
,
2021
, “
Development and Verification of a Computationally Efficient Stochastically Linearized Planetary Gear Train Model With Ring Elasticity
,”
Mech. Mach. Theory
,
155
, p.
104061
.
24.
Taheri Kahnamouei
,
J.
, and
Yang
,
J.
,
2017
, “
Statistical Linearization of Nonlinear Stiffness Matrix of Planetary Gear Train
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE2017)
,
Tampa, FL
,
Nov. 3–9
, p. V04BT05A005.
25.
Maatar
,
M.
, and
Velex
,
P.
,
1996
, “
An Analytical Expression for the Time-Varying Contact Length in Perfect Cylindrical Gears: Some Possible Applications in Gear Dynamics
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
586
589
. 
26.
Newland
,
D. E.
,
2012
,
An Introduction to Random Vibrations Spectral & Wavelet Analysis
,
Courier Corporation
,
Chelmsford, MA
.
27.
Socha
,
L.
,
2007
,
Linearization Methods for Stochastic Dynamic Systems, Vol. 730
,
Springer Science & Business Media
.
28.
Bernard
,
P.
, and
Fleury
,
G.
,
2002
, “
Stochastic Newmark Scheme
,”
Probabilistic Eng. Mech.
,
17
(
1
), pp.
45
61
.
29.
Zhang
,
L.
,
Zu
,
J.
, and
Zheng
,
Z.
,
1999
, “
The Stochastic Newmark Algorithm for Random Analysis of Multi-Degree-of-Freedom Nonlinear Systems
,”
Comp. Struct.
,
70
(
5
), pp.
557
568
.
30.
Bucher
,
C.
,
2009
,
Computational Analysis of Randomness in Structural Mechanics: Structures and Infrastructures Book Series, Vol. 3
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.