Abstract

In this paper, flexural wave propagation, attenuation, and reflection through finite number of rigid elastic combined metabeam (RECM) elements sandwiched between two Euler Bernoulli beams has been studied, implementing the spectral element, inverse Fourier transform, and transfer matrix method. Spectral element has been formulated for the unit representative cell of RECM employing the rigid body dynamics. Governing dimensionless parameters are identified. Furthermore, the sensitivity analysis has been carried out to comprehend the influence of non-dimensional parameters, such as mass ratio, length ratio, and rotary inertia ratio on the attenuation profile. Rotary inertia of rigid body produces local resonance (LR) band, which may abridge the gap between the two Bragg scattering (BS) bands and results in an ultra-wide stop band for the specific combination of governing non-dimensional parameters. A total of 164% normalized attenuation band is possible to obtain in RECM. Natural frequencies for the finite RECM have also been evaluated from the global spectral element matrix and observed that some natural frequencies lie in the attenuation band. Therefore, the level of attenuation near that natural frequencies is significantly less and cannot be identified from the dispersion diagram of the infinite RECM.

References

1.
Mead
,
D.
,
1973
, “
A General Theory of Harmonic Wave Propagation in Linear Periodic Systems With Multiple Coupling
,”
J. Sound Vib.
,
27
(
2
), pp.
235
260
.
2.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
3.
SenGupta
,
G.
,
1980
, “
Vibration of Periodic Structures
,”
Shock Vib. Dig.
,
12
(
3
), pp.
17
31
.
4.
Roy
,
A.
, and
Plunkett
,
R.
,
1986
, “
Wave Attenuation in Periodic Structures
,”
J. Sound Vib.
,
104
(
3
), pp.
395
410
.
5.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
(
2
), pp.
223
236
.
6.
Mace
,
B.
,
1984
, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
,
97
(
2
), pp.
237
246
.
7.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Dover
,
New York
.
8.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
9.
Banerjee
,
A.
,
Das
,
R.
, and
Calius
,
E. P.
,
2019
, “
Waves in Structured Mediums or Metamaterials: A Review
,”
Arch. Comput. Methods Eng.
,
26
(
4
), pp.
1029
1058
.
10.
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Influence of Conicity on the Free Wave Propagation in Symmetric Tapered Periodic Beam
,”
Mech. Res. Commun.
,
111
, p.
103655
.
11.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
.
12.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2020
, “
Realization of an Ultrawide Stop Band in a 2-d Elastic Metamaterial With Topologically Optimized Inertial Amplification Mechanisms
,”
Int. J. Solids Struct.
,
203
, pp.
138
150
.
13.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
14.
Ozmutlu
,
A.
,
Ebrahimian
,
M.
, and
Todorovska
,
M. I.
,
2018
, “
Wave Propagation in Buildings as Periodic Structures: Timoshenko Beam With Rigid Floor Slabs Model
,”
J. Eng. Mech.
,
144
(
4
), p.
04018010
.
15.
Frandsen
,
N. M.
,
Bilal
,
O. R.
,
Jensen
,
J. S.
, and
Hussein
,
M. I.
,
2016
, “
Inertial Amplification of Continuous Structures: Large Band Gaps From Small Masses
,”
J. Appl. Phys.
,
119
(
12
), p.
124902
.
16.
Yu
,
D.
,
Wen
,
J.
,
Shen
,
H.
,
Xiao
,
Y.
, and
Wen
,
X.
,
2012
, “
Propagation of Flexural Wave in Periodic Beam on Elastic Foundations
,”
Phys. Lett. A
,
376
(
4
), pp.
626
630
.
17.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Broadband Locally Resonant Beams Containing Multiple Periodic Arrays of Attached Resonators
,”
Phys. Lett. A
,
376
(
16
), pp.
1384
1390
.
18.
Banerjee
,
A.
,
2020
, “
Non-Dimensional Analysis of the Elastic Beam Having Periodic Linear Spring Mass Resonators
,”
Meccanica
,
55
(
5
), pp.
1181
1191
.
19.
Banerjee
,
A.
,
2020
, “
Influence of the Torsional Vibration of the Periodically Attached Perpendicular Beam Resonator on the Flexural Band of a Euler–Bernoulli Beam
,”
Phys. Lett. A
,
384
(
29
), p.
126757
.
20.
Wang
,
T.
,
Sheng
,
M.-P.
, and
Qin
,
Q.-H.
,
2016
, “
Multi-Flexural Band Gaps in an Euler–Bernoulli Beam With Lateral Local Resonators
,”
Phys. Lett. A
,
380
(
4
), pp.
525
529
.
21.
Sugino
,
C.
, and
Erturk
,
A.
,
2018
, “
Analysis of Multifunctional Piezoelectric Metastructures for Low-Frequency Bandgap Formation and Energy Harvesting
,”
J. Phys. D: Appl. Phys.
,
51
(
21
), p.
215103
.
22.
Banerjee
,
A.
,
2021
, “
Flexural Waves in Graded Metabeam Lattice
,”
Phys. Lett. A
,
388
, p.
127057
.
23.
Hu
,
G.
,
Austin
,
A. C.
,
Sorokin
,
V.
, and
Tang
,
L.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process.
,
146
, p.
106982
.
24.
Gopalakrishnan
,
S.
, and
Doyle
,
J.
,
1994
, “
Wave Propagation in Connected Waveguides of Varying Cross-Section
,”
J. Sound Vib.
,
175
(
3
), pp.
347
363
.
25.
Lee
,
S.-K.
,
Mace
,
B.
, and
Brennan
,
M.
,
2007
, “
Wave Propagation, Reflection and Transmission in Non-uniform One-Dimensional Waveguides
,”
J. Sound Vib.
,
304
(
1–2
), pp.
31
49
.
26.
Manohar
,
C.
, and
Adhikari
,
S.
,
1998
, “
Dynamic Stiffness of Randomly Parametered Beams
,”
Probab. Eng. Mech.
,
13
(
1
), pp.
39
51
.
27.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
John Wiley & Sons
,
Singapore
.
28.
Jang
,
I.
, and
Lee
,
U.
,
2012
, “
Spectral Element Analysis of the Axial-Bending-Shear Coupled Vibrations of Composite Timoshenko Beams
,”
J. Compos. Mater.
,
46
(
22
), pp.
2811
2828
.
29.
Low
,
K.
,
1998
, “
On the Eigenfrequencies for Mass Loaded Beams Under Classical Boundary Conditions
,”
J. Sound Vib.
,
215
(
2
), pp.
381
389
.
30.
Banerjee
,
J.
, and
Sobey
,
A.
,
2003
, “
Further Investigation Into Eigenfrequencies of a Two-Part Beam–Mass System
,”
J. Sound Vib.
,
265
(
4
), pp.
899
908
.
31.
Obradović
,
A.
,
Šalinić
,
S.
,
Trifković
,
D. R.
,
Zorić
,
N.
, and
Stokić
,
Z.
,
2015
, “
Free Vibration of Structures Composed of Rigid Bodies and Elastic Beam Segments
,”
J. Sound Vib.
,
347
, pp.
126
138
.
32.
Tomović
,
A.
,
Šalinić
,
S.
,
Obradović
,
A.
,
Grbović
,
A.
, and
Milovančević
,
M.
,
2020
, “
Closed-Form Solution for the Free Axial-Bending Vibration Problem of Structures Composed of Rigid Bodies and Elastic Beam Segments
,”
Appl. Math. Model.
,
77
(
part 2
), pp.
1148
1167
.
33.
Liu
,
X.
,
Sun
,
C.
,
Ranjan Banerjee
,
J.
,
Dan
,
H.-C.
, and
Chang
,
L.
,
2021
, “
An Exact Dynamic Stiffness Method for Multibody Systems Consisting of Beams and Rigid-Bodies
,”
Mech. Syst. Signal Process.
,
150
, p.
107264
.
34.
Wu
,
J.-J.
,
2011
, “
Use of the Elastic-and-Rigid-Combined Beam Element for Dynamic Analysis of a Two-Dimensional Frame With Arbitrarily Distributed Rigid Beam Segments
,”
Appl. Math. Model.
,
35
(
3
), pp.
1240
1251
.
35.
Mead
,
D.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: II. Multi-coupled Systems, With and Without Damping
,”
J. Sound Vib.
,
40
(
1
), pp.
19
39
.
36.
Fu
,
Z.-F.
, and
He
,
J.
,
2001
,
Modal Analysis
,
Elsevier
,
Oxford, UK
.
37.
Banerjee
,
A.
,
Das
,
R.
, and
Calius
,
E. P.
,
2016
, “A New Approach for Determinationof the Attenuation Bandwidth of a Resonating Metamaterial,”
Applied Mechanics and Materials
,
Y.
Gu
,
H.
Guan
,
E.
Sauret
,
S.
Saha
,
H.
Zhan
, and
R.
Persky
, eds., Vol.
846
,
Trans Tech Publications
,
Switzerland
, pp.
264
269
.
38.
Davis
,
B. L.
,
Tomchek
,
A. S.
,
Flores
,
E. A.
,
Liu
,
L.
, and
Hussein
,
M. I.
,
2011
, “
Analysis of Periodicity Termination in Phononic Crystals
,”
ASME International Mechanical Engineering Congress and Exposition
,
Denver, CO
,
Nov. 11–17
, Vol. 54945, pp.
973
977
.
39.
Doyle
,
J. F.
,
2012
,
Wave Propagation in Structures: An FFT-Based Spectral Analysis Methodology
,
Springer Science & Business Media
,
New York
.
40.
Huang
,
H.
, and
Sun
,
C.
,
2011
, “
Theoretical Investigation of the Behavior of an Acoustic Metamaterial With Extreme Young’s Modulus
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2070
2081
.
You do not currently have access to this content.