Abstract

In the context of tribomechadynamics, hyper-reduction means that the deformations, as well as the contact and friction forces, are not computed based on all involved finite element nodes but in a reduced space. The goal is a reduction of the simulation time so that virtual tribomechadynamics becomes an efficient complement to test bench investigations and a useful tool for predictive simulation. In this work, an efficient hyper-reduction strategy for contact and friction forces is proposed. The available and a priori known space of possible gaps is used for the hyper-reduction of contact forces without using any snapshots. Friction forces on the other hand are computed based on snapshots stemming from a model order reduced simulation. After the theory has been explained, a generic example with bolted joints and different load cases is used to demonstrate the result quality of the method as well as the computational time savings.

References

1.
Wall
,
M.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2022
, “
Observations of Modal Coupling Due to Bolted Joints in an Experimental Benchmark Structure
,”
Mech. Syst. Signal Process.
,
162
, p.
107968
.
2.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
, pp.
1
16
.
3.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
A Complete Strategy for Efficient and Accurate Multibody Dynamics of Flexible Structures With Large Lap Joints Considering Contact and Friction
,”
Multibody Syst. Dyn.
,
40
(
4
), pp.
407
436
.
4.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
Reduced Order Modeling of Preloaded Bolted Structures in Multibody Systems by the Use of Trial Vector Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051032
.
5.
Pichler
,
F.
,
Witteveen
,
W.
, and
Koller
,
L.
,
2020
, “
Efficient Virtual Tribomechadynamics by Means of Joint Modes for Detailed Instigation of Complex Local Stick and Slip Behavior Inside a Joint
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051108
.
6.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
7.
Koller
,
L.
,
Witteveen
,
W.
,
Pichler
,
F.
, and
Fischer
,
P.
,
2021
, “
A General Hyper-Reduction Strategy for Finite Element Structures With Nonlinear
,”
Comput. Methods Appl. Mech. Eng.
,
379
, p.
113744
.
8.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.
9.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge
.
10.
Zienkiewicz
,
A. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Ist Basis and Fundamentals
, 6th ed.,
Butterworth-Heinemann
,
Waltham, MA
.
11.
Bathe
,
K.-J.
,
2014
,
Finite Element Procedures
, 2nd ed.,
Klaus-Jürgen Bathe
,
Germany
.
12.
Koller
,
L.
,
Witteveen
,
W.
,
Pichler
,
F.
, and
Fischer
,
P.
,
2020
, “
Semihyper-Reduction for Finite Element Structures With Nonlinear Surface Loads on the Basis of Stress Modes
,”
ASME J. Comput. Nonlinear Mech.
,
15
(
8
), p.
081004
.
13.
Volkwein
,
S.
,
2013
, “
Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling: Lecture Notes
,” http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf, Accessed December 13, 2021.
14.
Schwertassek
,
R.
,
Dombrowski
,
S. V.
, and
Wallrapp
,
O.
,
1999
, “
Modal Representation of Stress in Flexible Multibody Simulation
,”
Nonlinear Dyn.
,
20
(
4
), pp.
381
399
.
15.
Tiso
,
P.
, and
Rixen
,
D. J.
,
2013
, “Discrete Empirical Interpolation Method for Finite Element Structural Dynamics,”
Topics in Non-Linear Dynamics
,
G.
Kerschen
,
D.
Adams
, and
A.
Carrella
, eds., Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 35,
Springer New York
,
New York
, pp.
203
212
.
16.
Breitfuss
,
M.
,
Irschik
,
H.
,
Holl
,
H. J.
, and
Witteveen
,
W.
,
2014
, “DEIM for the Efficient Computation of Contact Interface Stresses,”
Dynamics of Coupled Structures
,
M.
Allen
,
R.
Mayes
, and
D.
Rixen
, eds., Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 32,
Springer International Publishing
,
Cham
,
2014
, pp.
435
445
.
17.
Hughes
,
P. J.
,
Scott
,
W.
,
Wu
,
W.
,
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Tiso
,
P.
,
2019
, “Interface Reduction on Hurty/Craig–Bampton Substructures With Frictionless Contact,”
Nonlinear Dynamics
,
G.
Kerschen
, ed., Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1,
Springer International Publishing
,
Cham
, pp.
1
16
.
18.
Wall
,
M.
,
Allen
,
M.
, and
Zare
,
I.
,
2019
, “
Predicting S4 Beam Joint Nonlinearity Using Quasi-Static Modal Analysis
,”
Nonlinear Structures and Systems, Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1; IMAC-XXXVII
,
Orlando, FL
,
Jan. 28–31
,
Springer
,
Cham
, pp.
39
51
.
19.
Wall
,
M.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2020
, “
Observations of Modal Coupling Due to Bolted Joints in an Experimental Benchmark Structure
,”
Mech. Syst. Signal Process
,
162
, p.
107968
.
20.
MSC Software Corporation
,
2013
, MSC Nastran 2013 Quick Reference Guide.
21.
Pichler
,
F.
, and
Witteveen
,
W.
,
2021
,
Nonlinear Structures & Systems, Vol. 1
,
G.
Kerschen
, ed.,
©The Society for Experimental Mechanics, Inc.
,
Cham, Switzerland
.
22.
Willner
,
K.
,
1995
,
Ph.D. thesis
,
Universität der Bundeswehr Hamburg
,
Hamburg, Germany
.
23.
Willner
,
K.
, and
Gaul
,
L.
,
1995
, “A Penalty Approach for Contact Description by FEM Based on Interface Physics,”
Proceedings of Contact Mechanics II
,
M. H.
Aliabadi
, and
C.
Allesandri
, eds.,
Computational Mechanics Publications
, pp.
257
264
24.
Lenz
,
J.
,
1997
, “
Strukturdynamik unter dem Einfluß von Mikro- und Makroschlupf in Fügestellen (German)
,”
Ph.D. thesis
,
Bericht aus dem Institut A für Mechanik, Institut für Mechanik Stuttgart
.
25.
Lenz
,
J.
, and
Gaul
,
L.
,
1995
, “
The Influence of Microslip on the Dynamic Behavior of Bolted Joints
,”
Proceedings of the IMAC XIII, Society of Experimental Mechanics
,
Nashville, TN
,
Feb. 13–16
, pp.
248
254
26.
Scheffold
,
D.
,
Bach
,
C.
,
Duddeck
,
F.
,
Müller
,
G.
, and
Buchschmid
,
M.
,
2018
, “
Vibration Frequency Optimization of Jointed Structures With Contact Nonlinearities Using Hyper-Reduction
,”
IFAC-PapersOnLine
,
51
(
2
), pp.
843
848
.
27.
Balaji
,
N. N.
,
Dreher
,
T.
,
Krack
,
M.
, and
Brake
,
M. R. W.
,
2021
, “
Reduced Order Modeling for the Dynamics of Jointed Structures Through Hyper-Reduced Interface Representation
,”
Mech. Syst. Signal Process.
,
149
, p.
107249
.
You do not currently have access to this content.