Abstract

The emergence of the use of mechanical metamaterials for vibration suppression and the creation of frequency gaps in structures require an understanding of the fundament underlying dynamics partial differential equations coupled to ordinary differential equations. Essentially periodic structures consist of a distributed parameter structure connected (embedded) to a series of spring-mass-dampers. Such systems in the past have been studied as combined dynamical systems. This work deals with the modal analysis of non-conservative combined dynamic systems formed by assembling distributed parameter structures and linear, viscously damped, lumped parameter oscillators. The mathematical model of the forced response of such dynamic systems is presented via differential operators. The related non-linear eigenproblem is formulated next and a proper solution is provided. Furthermore, the orthogonality of the eigenfunctions is studied and the completeness of the generated solution space is verified. Coupled modal coordinate differential equations result through modal analysis, thus revealing the non-proportional damping configuration, while the proportional damping conditions are also derived and discussed. The theory is applied to non-conservative Euler–Bernoulli beams subject to different types of boundary conditions and coupled to linear, viscously damped oscillators. A numerical example yields interesting conclusions about the non-proportionality and the applicability of the associated methods to solving the coupled differential equations.

References

1.
Yin
,
J. F.
,
Cai
,
L.
,
Fang
,
X.
,
Xiao
,
Y.
,
Yang
,
H. B.
,
Zhang
,
H. J.
,
Zhong
,
J.
,
Zhao
,
H. G.
,
Yu
,
D. L.
, and
Wen
,
J. H.
,
2022
, “
Review on Research Progress of Mechanical Metamaterials and Their Applications on Vibration and Noise Control
,”
Adv. Mech.
,
52
(
3
), pp.
1
79
.
2.
Barchiesi
,
E.
,
Spagnuolo
,
M.
, and
Placidi
,
L.
,
2019
, “
Mechanical Metamaterials: A State of the Art
,”
Math. Mech. Solids
,
24
(
1
), pp.
212
234
.
3.
Matlack
,
K. H.
,
Bauhofer
,
A.
,
Krödel
,
S.
,
Palermo
,
A.
, and
Daraio
,
C.
,
2016
, “
Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
30
), pp.
8386
8390
.
4.
Inman
,
D. J.
, and
Gunasekar
,
A.
,
2021
, “
Frequency Separation in Architected Structures Using Inverse Methods
,”
J. Appl. Comput. Mech.
,
7
(
4
), pp.
2084
2095
.
5.
Arretche
,
I.
, and
Matlack
,
K. H.
,
2019
, “
Experimental Testing of Vibration Mitigation in 3D-Printed Architected Metastructures
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111008
.
6.
Reichl
,
K. K.
, and
Inman
,
D. J.
,
2017
, “
Lumped Mass Model of a 1D Metastructure for Vibration Suppression With No Additional Mass
,”
J. Sound Vib.
,
403
, pp.
75
89
.
7.
Abdeljaber
,
O.
,
Avci
,
O.
, and
Inman
,
D. J.
,
2016
, “
Optimization of Chiral Lattice Based Metastructures for Broadband Vibration Suppression Using Genetic Algorithms
,”
J. Sound Vib.
,
369
, pp.
50
62
.
8.
Bergman
,
L.
, and
Nicholson
,
J.
,
1985
, “
Forced Vibration of a Damped Combined Linear System
,”
ASME J. Vib. Acoust.
,
107
(
3
), pp.
275
281
.
9.
Inman
,
D. J.
,
2006
,
Vibrations With Control
, 2nd ed.,
John Wiley and Sons Ltd.
,
Hoboken, NJ
, p.
276
.
10.
Kukla
,
S.
, and
Zamojska
,
I.
,
2007
, “
Frequency Analysis of Axially Loaded Stepped Beams by Green's Function Method
,”
J. Sound Vib.
,
300
(
3–5
), pp.
1034
1041
.
11.
Oden
,
J.
,
1979
,
Applied Functional Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
249
.
12.
Meirovitch
,
L.
,
1980
,
Computational Methods in Structural Dynamics
,
Sijthoff & Noordhoff
,
Alphen aan den Rijn, The Netherlands
.
13.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Lei
,
Y.
,
2006
, “
Modal Analysis of Nonviscously Damped Beams
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
1026
1030
.
14.
Singh
,
K.
,
2016
, “
Eigenvalue and Eigenvector Computation for Discrete and Continuous Structures Composed of Viscoelastic Materials
,”
Int. J. Mech. Sci.
,
110
, pp.
127
137
.
15.
Caughey
,
T. K.
, and
O’Kelly
,
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
583
588
.
16.
Cudney
,
H. H.
, and
Inman
,
D. J.
,
1989
, “
Experimental Verification of Damping Mechanisms in a Composite Beam
,”
Proceedings of the 7th International Modal Analysis Conference
,
Jan. 30–Feb. 2
,
Las Vegas, NV
,
1
, pp.
704
710
.
17.
Hasselman
,
T. K.
,
1976
, “
Modal Coupling in Lightly Damped Structures
,”
AIAA J.
,
14
(
11
), pp.
1627
1628
.
18.
Bellos
,
J.
,
Inman
,
D. J.
, and
Bakas
,
N.
,
2017
, “
Nature of Coupling in Non-Conservative Distributed Parameter Systems Attached to External Damping Sources
,”
Math. Mech. Solids
,
25
(
7
), pp.
1367
1383
.
19.
Prater
,
G.
, and
Singh
,
R.
,
1986
, “
Quantification of the Extent of Non-Proportional Viscous Damping in Discrete Vibratory Systems
,”
J. Sound Vib.
,
104
(
1
), pp.
109
125
.
20.
Banks
,
H. T.
,
Bergman
,
L. A.
,
Inman
,
D. J.
, and
Luo
,
Z.
,
1998
, “
On the Existence of Normal Modes of Damped Discrete Continuous Systems
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
980
989
.
21.
Kabe
,
A. M.
, and
Sako
,
B. H.
,
2016
, “
Issues With Proportional Damping
,”
AIAA J.
,
54
(
9
), pp.
1
5
.
22.
Bellos
,
J.
, and
Inman
,
D. J.
,
1989
, “
Nature of Coupling in Non-Conservative Lumped Parameter Systems
,”
J. Guid. Control Dyn.
,
12
(
2
), pp.
751
753
.
23.
Bellos
,
J.
, and
Inman
,
D. J.
,
1990
, “
Frequency Response of Non-Proportionally Damped, Lumped Parameter, Linear Dynamic Systems
,”
ASME J. Vib. Acoust.
,
112
(
2
), pp.
194
201
.
You do not currently have access to this content.