Abstract

A new phononic crystal with the graded supercell configuration is proposed to broaden the Bragg scattering band gaps. The graded structural design can merge adjacent multiple band gaps into an extremely broad one. The proposed phononic crystal is made up of a periodic arrangement of supercells, and the supercells are composed of unit cells with graded structural parameters. The mechanical model of the graded phononic crystals is established based on the transfer matrix method to investigate in-plane elastic waves propagating and band structures of the periodic system. Modal analysis shows that the mechanism for the broadening of band gap is that the graded supercell configuration breaks some symmetries of the phononic crystal, resulting in the opening of the Dirac cone and creation of new band gaps. The effects of the main structural parameters related to graded supercell design on band gap broadening are studied by simulation and verified by the experiment. The present study is beneficial to the design of new functional materials with broadband vibration isolation performance.

References

1.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.
2.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
.
3.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
4810
.
4.
Olsson
,
R. H.
, and
El-Kady
,
I.
,
2008
, “
Microfabricated Phononic Crystal Devices and Applications
,”
Meas. Sci. Technol.
,
20
(
1
), p.
012002
.
5.
Maldovan
,
M.
, and
Thomas
,
E. L.
,
2009
,
Periodic Materials and Interference Lithography: For Photonics, Phononics and Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
6.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
.
7.
Vadal`a
,
F.
,
Bacigalupo
,
A.
,
Lepidi
,
M.
, and
Gambarotta
,
L.
,
2018
, “
Bloch Wave Filtering in Tetrachiral Materials via Mechanical Tuning
,”
Compos. Struct.
,
201
, pp.
340
351
.
8.
Bacigalupo
,
A.
,
Gnecco
,
G.
,
Lepidi
,
M.
, and
Gambarotta
,
L.
,
2017
, “
Optimal Design of Low-Frequency Band Gaps in Anti-Tetrachiral Lattice Meta-Materials
,”
Composites, Part B
,
115
, pp.
341
359
.
9.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
10.
Wen
,
X.
,
2006
,
Photonic/Phononic Crystals Theory and Technology
,
Science Press
,
Beijing
.
11.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
12.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer Science & Business Media
,
Berlin, Germany
.
13.
Zhang
,
Q.
,
Guo
,
D.
, and
Hu
,
G.
,
2021
, “
Tailored Mechanical Metamaterials With Programmable Quasi-Zerostiffness Features for Full-Band Vibration Isolation
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2101428
.
14.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
(
16
), p.
165116
.
15.
Atai
,
A.
,
Nikranjbar
,
A.
, and
Kasiri
,
R.
,
2012
, “
Buckling and Post-Buckling Behaviour of Semicircular Functionally Graded Material Arches: A Theoretical Study
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
3
), pp.
607
614
.
16.
Saleh
,
B.
,
Jiang
,
J.
,
Fathi
,
R.
,
Al-hababi
,
T.
,
Xu
,
Q.
,
Wang
,
L.
,
Song
,
D.
, and
Ma
,
A.
,
2020
, “
30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges
,”
Composites, Part B
,
201
, p.
108376
.
17.
Nogata
,
F.
, and
Takahashi
,
H.
,
1995
, “
Intelligent Functionally Graded Material: Bamboo
,”
Compos. Eng.
,
5
(
7
), pp.
743
751
.
18.
Knoppers
,
G.
,
Gunnink
,
J.
,
Van Den Hout
,
J.
, and
Van Vliet
,
W.
,
2005
, “
The Reality of Functionally Graded Material Products
,”
Intelligent Production Machines and Systems: First I* PROMS Virtual Conference
,
Amsterdam
,
July 4–15
.
19.
Miyamoto
,
Y.
,
Kaysser
,
W.
,
Rabin
,
B.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
1999
, “Processing and Fabrication,”
Functionally Graded Materials
,
R. G.
Ford
, ed.,
Springer
,
New York
, pp.
161
245
.
20.
Rabin
,
B. H.
, and
Shiota
,
I.
,
1995
, “
Functionally Gradient Materials
,”
MRS Bull.
,
20
(
1
), pp.
14
18
.
21.
Liu
,
C.
, and
Reina
,
C.
,
2018
, “
Broadband Locally Resonant Metamaterials With Graded Hierarchical Architecture
,”
J. Appl. Phys.
,
123
(
9
), p.
095108
.
22.
Hu
,
G.
,
Austin
,
A. C.
,
Sorokin
,
V.
, and
Tang
,
L.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process
,
146
, p.
106982
.
23.
Bria
,
D.
,
Djafari-Rouhani
,
B.
,
Bousfia
,
A.
,
El Boudouti
,
E.
, and
Nougaoui
,
A.
,
2001
, “
Absolute Acoustic Band Gap in Coupled Multilayer Structures
,”
EPL
,
55
(
6
), p.
841
.
24.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
25.
Pai
,
P. F.
,
Peng
,
H.
, and
Jiang
,
S.
,
2014
, “
Acoustic Metamaterial Beams Based on Multi-Frequency Vibration Absorbers
,”
Int. J. Mech. Sci.
,
79
, pp.
195
205
.
26.
Yao
,
D.
,
Xiong
,
M.
,
Luo
,
J.
, and
Yao
,
L.
,
2022
, “
Flexural Wave Mitigation in Metamaterial Cylindrical Curved Shells With Periodic Graded Arrays of Multi-Resonator
,”
Mech. Syst. Signal Process
,
168
, p.
108721
.
27.
Kushwaha
,
M.
, and
Halevi
,
P.
,
1997
, “
Ultra-Wideband Filter for Noise Control
,”
Ph.D. thesis
,
Acoustical Society of America
,
Melville, NY
.
28.
Kim
,
S.
,
Choi
,
J.
,
Seung
,
H. M.
,
Jung
,
I.
,
Ryu
,
K. H.
,
Song
,
H.-C.
,
Kang
,
C.-Y.
, and
Kim
,
M.
,
2022
, “
Gradientindex Phononic Crystal and Helmholtz Resonator Coupled Structure for High-Performance Acoustic Energy Harvesting
,”
Nano Energy
,
101
, p.
107544
.
29.
Allam
,
A.
,
Sabra
,
K.
, and
Erturk
,
A.
,
2020
, “
3d-Printed Gradient-Index Phononic Crystal Lens for Underwater Acoustic Wave Focusing
,”
Phys. Rev. Appl.
,
13
(
6
), p.
064064
.
30.
Tol
,
S.
,
Degertekin
,
F.
, and
Erturk
,
A.
,
2019
, “
3d-Printed Phononic Crystal Lens for Elastic Wave Focusing and Energy Harvesting
,”
Addit. Manuf.
,
29
, p.
100780
.
31.
Zhang
,
X.
,
Qu
,
Z.
, and
Xu
,
Y.
,
2019
, “
Enhanced Sound Absorption in Two-Dimensional Continuously Graded Phononic Crystals
,”
Jpn. J. Appl. Phys.
,
58
(
9
), p.
090904
.
32.
Zhang
,
X.
, and
Qu
,
Z.
,
2022
, “
Viscous and Thermal Dissipation During the Sound Propagation in the Continuously Graded Phononic Crystals
,”
Appl. Acoust.
,
189
, p.
108606
.
33.
Liang
,
Y.-J.
,
Chen
,
L.-W.
,
Wang
,
C.-C.
, and
Chang
,
I.-L.
,
2014
, “
An Acoustic Absorber Implemented by Graded Index Phononic Crystals
,”
J. Appl. Phys.
,
115
(
24
), p.
244513
.
34.
Lan
,
M.
, and
Wei
,
P.
,
2014
, “
Band Gap of Piezoelectric/Piezomagnetic Phononic Crystal With Graded Interlayer
,”
Acta Mech.
,
225
(
6
), pp.
1779
1794
.
35.
Jo
,
S.-H.
,
Yoon
,
H.
,
Shin
,
Y. C.
, and
Youn
,
B. D.
,
2020
, “
A Graded Phononic Crystal With Decoupled Double Defects for Broadband Energy Localization
,”
Int. J. Mech. Sci.
,
183
, p.
105833
.
36.
Wu
,
M.-L.
,
Wu
,
L.-Y.
,
Yang
,
W.-P.
, and
Chen
,
L.-W.
,
2009
, “
Elastic Wave Band Gaps of One-Dimensional Phononic Crystals With Functionally Graded Materials
,”
Smart Mater. Struct.
,
18
(
11
), p.
115013
.
37.
Caballero
,
D.
,
Śanchez-Dehesa
,
J.
,
Rubio
,
C.
,
Martinez-Sala
,
R.
,
Sanchez-Perez
,
J.
,
Meseguer
,
F.
, and
Llinares
,
J.
,
1999
, “
Large Two-Dimensional Sonic Band Gaps
,”
Phys. Rev. E
,
60
(
6
), p.
R6316
.
38.
Li
,
Y.
,
Wu
,
Y.
, and
Mei
,
J.
,
2014
, “
Double Dirac Cones in Phononic Crystals
,”
Appl. Phys. Lett.
,
105
(
1
), p.
014107
.
39.
Lu
,
J.
,
Qiu
,
C.
,
Xu
,
S.
,
Ye
,
Y.
,
Ke
,
M.
, and
Liu
,
Z.
,
2014
, “
Dirac Cones in Two-Dimensional Artificial Crystals for Classical Waves
,”
Phys. Rev. B
,
89
(
13
), p.
134302
.
40.
Mei
,
C.
,
Li
,
L.
,
Tang
,
H.
,
Han
,
X.
,
Wang
,
X.
, and
Hu
,
Y.
,
2021
, “
Broadening Band Gaps of Shear Horizontal Waves of Metamaterials via Graded Hierarchical Architectures
,”
Compos. Struct.
,
271
, p.
114118
.
41.
Jiang
,
S.
,
Dai
,
L.
,
Chen
,
H.
,
Hu
,
H.
,
Jiang
,
W.
, and
Chen
,
X.
,
2017
, “
Folding Beam-Type Piezoelectric Phononic Crystal With Low-Frequency and Broad Band Gap
,”
Appl. Math. Mech.
,
38
(
3
), pp.
411
422
.
42.
Rubin
,
M.
,
2003
, “
On the Quest for the Best Timoshenko Shear Coefficient
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
154
157
.
43.
Stephen
,
N.
, and
Puchegger
,
S.
,
2006
, “
On the Valid Frequency Range of Timoshenko Beam Theory
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1082
1087
.
44.
Camley
,
R.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Maradudin
,
A.
,
1983
, “
Transverse Elastic Waves in Periodically Layered Infinite and Semi-Infinite Media
,”
Phys. Rev. B
,
27
(
12
), pp.
7318
7329
.
45.
Wu
,
J.-S.
,
2013
,
Analytical and Numerical Methods for Vibration Analyses
,
John Wiley & Sons
,
Hoboken, NJ
.
46.
Kim
,
E.
, and
Yang
,
J.
,
2014
, “
Wave Propagation in Single Column Woodpile Phononic Crystals: Formation of Tunable Band Gaps
,”
J. Mech. Phys. Solids
,
71
, pp.
33
45
.
47.
Darinskii
,
A.
,
Le Clezio
,
E.
, and
Feuillard
,
G.
,
2008
, “
Acoustic Wave Degeneracies in Two-Dimensional Phononic Crystals
,”
Wave Motion
,
45
(
7–8
), pp.
970
980
.
48.
Qiu
,
M.
, and
He
,
S.
,
1999
, “
Large Complete Band Gap in Two-Dimensional Photonic Crystals With Elliptic air Holes
,”
Phys. Rev. B
,
60
(
15
), pp.
10610
10612
.
49.
Norris
,
R. C.
,
Hamel
,
J. S.
, and
Nadeau
,
P.
,
2008
, “
Phononic Band Gap Crystals With Periodic Fractal Inclusions: Theoretical Study Using Numerical Analysis
,”
J. Appl. Phys.
,
103
(
10
), p.
104908
.
50.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
(
12
), p.
121910
.
You do not currently have access to this content.