Abstract

The first-passage time probability plays an important role in the reliability assessment of dynamic systems in random vibrations. To find the solution of the first-passage time probability is a challenging task. The analytical solution to this problem is not available even for linear dynamic systems. For nonlinear and multi-degree-of-freedom systems, it is even more challenging. This paper proposes a radial basis function neural networks method for solving the first-passage time probability problem of linear, nonlinear, and multi-degree-of-freedom dynamic systems. In this paper, the proposed method is applied to solve for the backward Kolmogorov equation subject to boundary conditions defined by the safe domain. A null-space solution strategy is proposed to deal with the boundary condition. Several examples including a two degrees-of-freedom nonlinear Duffing system are studied with the proposed method. The results are compared with Monte Carlo simulations. It is believed that the radial basis function neural networks method provides a new and effective tool for the reliability assessment and design of multi-degree-of-freedom nonlinear stochastic dynamic systems.

References

1.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics – Advanced Theory and Applications
,
McGraw-Hill
,
New York
.
2.
Sun
,
J. Q.
,
2006
,
Stochastic Dynamics and Control
,
Elsevier Science Ltd
.,
Oxford, UK
.
3.
Dynkin
,
E. B.
,
1965
, Markov Processes (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen), Academic Press, New York.
4.
Cox
,
D. R.
, and
Miller
,
H. D.
,
1965
,
The Theory of Stochastic Processes
(Wiley Publications in Statistics),
Wiley
,
New York
.
5.
Siegert
,
A. J. F.
,
1951
, “
On the First Passage Time Probability Problem
,”
Phys. Rev.
,
81
(
4
), pp.
617
623
.
6.
Roberts
,
J. B.
,
1968
, “
An Approach to the First-Passage Problem in Random Vibration
,”
J. Sound Vib.
,
8
(
2
), pp.
301
328
.
7.
Roberts
,
J. B.
,
1975
, “
Probability of First-Passage Failure for Nonstationary Random Vibration
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
716
720
.
8.
Zhu
,
W. Q.
,
Deng
,
M. L.
, and
Huang
,
Z. L.
,
2002
, “
First-Passage Failure of Quasi-Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
274
282
.
9.
Li
,
W.
,
Xu
,
W.
,
Zhao
,
J.
, and
Jin
,
Y.
,
2006
, “
First-Passage Problem for Strong Nonlinear Stochastic Dynamical Systems
,”
Chaos Solitons Fract.
,
28
(
2
), pp.
414
421
.
10.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Deng
,
M. L.
,
2003
, “
First-Passage Failure and Its Feedback Minimization of Quasi-Partially Integrable Hamiltonian Systems
,”
Int. J. Nonlinear Mech.
,
38
(
8
), pp.
1133
1148
.
11.
Liu
,
Z. H.
, and
Zhu
,
W. Q.
,
2008
, “
First-Passage Failure of Quasi-Integrable Hamiltonian Systems Under Time-Delayed Feedback Control
,”
J. Sound Vib.
,
315
(
1–2
), pp.
301
317
.
12.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2010
, “
First Passage Failure of Quasi-Partial Integrable Generalized Hamiltonian Systems
,”
Int. J. Nonlinear Mech.
,
45
(
1
), pp.
56
62
.
13.
Crandall
,
S. H.
,
Chandiramani
,
K. L.
, and
Cook
,
R. G.
,
1966
, “
Some First-Passage Problems in Random Vibration
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
532
538
.
14.
Roberts
,
J. B.
,
1978
, “
First Passage Time for Oscillators With Non-linear Restoring Forces
,”
J. Sound Vib.
,
56
(
1
), pp.
71
86
.
15.
Abad
,
E.
,
Angstmann
,
C. N.
,
Henry
,
B. I.
,
McGann
,
A. V.
,
Le Vot
,
F.
, and
Yuste
,
S. B.
,
2020
, “
Reaction–Diffusion and Reaction–Subdiffusion Equations on Arbitrarily Evolving Domains
,”
Phys. Rev. E
,
102
(
3–1
), p.
032111
.
16.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1980
, “
Solution of the Pontriagin–Vitt Equation for the Moments of Time to First Passage of the Randomly Accelerated Particle by the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
15
(
9
), pp.
1408
1412
.
17.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1981
, “
Petrov–Galerkin Finite Element Solution for the First Passage Probability and Moments of First Passage Time of the Randomly Accelerated Free Particle
,”
Comput. Methods Appl. Mech. Eng.
,
27
(
3
), pp.
345
362
.
18.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1982
, “
On the Reliability of the Linear Oscillator and Systems of Coupled Oscillators
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1271
1295
.
19.
To
,
C. W. S.
, and
Chen
,
Z.
,
2008
, “
First Passage Time of Nonlinear Ship Rolling in Narrow Band Non-Stationary Random Seas
,”
J. Sound Vib.
,
309
(
1
), pp.
197
209
.
20.
Fuentes
,
M. A.
,
Wio
,
H. S.
, and
Toral
,
R.
,
2002
, “
Effective Markovian Approximation for Non-Gaussian Noises: A Path Integral Approach
,”
Phys. Stat. Mech. Appl.
,
303
(
1–2
), pp.
91
104
.
21.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
(
2
), pp.
233
248
.
22.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1018
1025
.
23.
Yan
,
Z.
, and
Gang
,
L.
,
2012
, “
Stationary Response and First-Passage Failure of Hysteretic Systems Under Random Excitations of Poisson White Noise and Its Filtered Processes
,”
Procedia Eng.
,
31
, pp.
1200
1205
.
24.
Crandall
,
S. H.
,
1970
, “
First-Crossing Probabilities of the Linear Oscillator
,”
J. Sound Vib.
,
12
(
3
), pp.
285
299
.
25.
Cramer
,
H.
, and
Leadbetter
,
M. R.
,
1967
, Stationary and Related Stochastic Processes; Sample Function Properties and Their Applications (Wiley Series in Probability and Mathematical Statistics), Wiley, New York.
26.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
, pp.
282
332
.
27.
Coleman
,
J. J.
,
1959
, “
Reliability of Aircraft Structures in Resisting Chance Failure
,”
Oper. Res.
,
7
, pp.
639
645
.
28.
Corotis
,
R. B.
,
Vanmarcke
,
E. H.
, and
Cornell
,
A. C.
,
1972
, “
First Passage of Nonstationary Random Processes
,”
J. Eng. Mech. Div.
,
98
(
2
), pp.
401
404
.
29.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
215
220
.
30.
Song
,
J. H.
, and
Kiureghian
,
A. D.
,
2006
, “
Joint First-Passage Probability and Reliability of Systems Under Stochastic Excitation
,”
J. Eng. Mech.
,
132
(
1
), pp.
65
77
.
31.
Yi
,
S. R.
, and
Song
,
J. H.
,
2021
, “
First-Passage Probability Estimation by Poisson Branching Process Model
,”
Struct. Saf.
,
90
(
2
), p.
102027
.
32.
Han
,
J.
,
Jentzen
,
A.
, and
Weinan
,
W.
,
2018
, “
Solving High-Dimensional Partial Differential Equations Using Deep Learning
,”
Proc. Natl. Acad. Sci.
,
115
(
34
), pp.
8505
8510
.
33.
Sirignano
,
J.
, and
Spiliopoulos
,
K.
,
2018
, “DGM: A Deep Learning Algorithm for Solving Partial Differential Equations,” arXiv:1708.07469v5 [q-fin.MF].
34.
Müller
,
J.
, and
Zeinhofer
,
M.
,
2020
, “Deep Ritz Revisited,” arXiv:1912.03937v2 [math.NA].
35.
He
,
J.
,
Li
,
L.
,
Xu
,
J.
, and
Zheng
,
C.
,
2018
, “ReLU Deep Neural Networks and Linear Finite Elements,” arXiv:1807.03973v2 [math.NA].
36.
Zhang
,
H.
,
Xu
,
Y.
,
Li
,
Y.
, and
Kurths
,
J.
,
2020
, “
Statistical Solution to SDEs With α-stable Lévy Noise Via Deep Neural Network
,”
Int. J. Dyn. Control
,
8
(
4
), pp.
1129
1140
.
37.
Xu
,
Y.
,
Zhang
,
H.
,
Li
,
Y.
,
Zhou
,
K.
,
Liu
,
Q.
, and
Kurths
,
J.
,
2020
, “
Solving Fokker–Planck Equation Using Deep Learning
,”
Chaos: Interdiscipl. J. Nonlinear Sci.
,
30
(
1
), p.
013133
.
38.
Wang
,
X.
,
Jiang
,
J.
,
Hong
,
L.
, and
Sun
,
J.-Q.
,
2021
, “
Random Vibration Analysis With Radial Basis Function Neural Networks
,”
Int. J. Dyn. Control
, pp.
1
10
.
39.
Lagaris
,
I. E.
,
Likas
,
A. C.
, and
Papageorgiou
,
D. G.
,
2000
, “
Neural-Network Methods for Boundary Value Problems With Irregular Boundaries
,”
IEEE Trans. Neural Netw.
,
11
(
5
), pp.
1041
1049
.
40.
Park
,
J.
, and
Sandberg
,
I. W.
,
1991
, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
,
3
, pp.
246
257
.
41.
Wu
,
Y.
,
Wang
,
H.
,
Zhang
,
B.
, and
Du
,
K.-L.
,
2012
, “
Using Radial Basis Function Networks for Function Approximation and Classification
,”
ISRN Appl. Math.
,
2012
, pp.
1
34
.
42.
Nelles
,
O.
,
2001
,
Nonlinear System Identification – From Classical Approaches to Neural Networks and Fuzzy Models
,
Springer
,
Berlin
.
43.
Cao
,
Z.-B.
, and
Le
,
Y.
,
2015
, “
Analysis of Bifurcation and Chaos in a Two-Degree-of-Freedom Duffing System
,”
J. Chongqing Univ. Technol. (Natl. Sci.)
,
29
(
10
), pp.
79
82
.
You do not currently have access to this content.