Abstract

In this work, the asymptotic stability bounds are identified for a class of linear quasi-periodic dynamical systems with stochastic parametric excitations and nonlinear perturbations. The application of a Lyapunov–Perron (L-P) transformation converts the linear part of such systems to a linear time-invariant form. In the past, using the Infante’s approach for linear time-invariant systems, stability theorem and corollary were derived and demonstrated for time periodic systems with variation in stochastic parameters. In this study, the same approach is extended toward linear quasi-periodic with stochastic parameter variations. Furthermore, the Lyapunov’s direct approach is employed to formulate the stability conditions a for quasi-periodic system with nonlinear perturbations. If the nonlinearities satisfy a bounding condition, sufficient conditions for asymptotic stability can be derived for such systems. The applications of stability theorems are demonstrated with practical examples of commutative and noncommutative quasi-periodic systems.

References

1.
Rega
,
G.
,
2020
, “
Nonlinear Dynamics in Mechanics and Engineering: 40 Years of Developments and Ali H. Nayfeh’s Legacy
,”
Nonlinear Dyn.
,
99
(
1
), pp.
11
34
.
2.
Rosenbloom
,
A.
,
1954
, “
Analysis of Linear Systems With Randomly Time-Varying Parameters
,”
Proc. Symp. Inf. Nets
, April, Vol.
3
,
Poly. Inst.
,
Brooklyn
, p.
145
.
3.
Bertram
,
J.
, and
Sarachik
,
P.
,
1959
, “
Stability of Circuits With Randomly Time-Varying Parameters
,”
IRE Trans. Circuit Theory
,
6
(
5
), pp.
260
270
.
4.
Kats
,
I. I.
, and
Krasovskii
,
N.
,
1960
, “
On the Stability of Systems With Random Parameters
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1225
1246
.
5.
Samuels
,
J.
,
1959
, “
On the Mean Square Stability of Random Linear Systems
,”
IRE Trans. Circuit Theory
,
6
(
5
), pp.
248
259
.
6.
Infante
,
E. F.
,
1968
, “
On the Stability of Some Linear Nonautonomous Random Systems
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
7
12
.
7.
Wiens
,
G.
, and
Sinha
,
S.
,
1984
, “
On the Application of Liapunov’s Direct Method to Discrete Dynamic Systems With Stochastic Parameters
,”
J. Sound Vib.
,
94
(
1
), pp.
19
31
.
8.
Ariaratnam
,
S.
, and
Ly
,
B.
,
1989
, “
Almost-Sure Stability of Some Linear Stochastic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
175
179
.
9.
Megretski
,
A.
, and
Rantzer
,
A.
,
1997
, “
System Analysis Via Integral Quadratic Constraints
,”
IEEE Trans. Automat. Contr.
,
42
(
6
), pp.
819
830
.
10.
Pfifer
,
H.
, and
Seiler
,
P.
,
2015
, “
Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints
,”
J. Robust Nonlinear Control
,
25
(
15
), pp.
2843
2864
.
11.
Bernstein
,
D. S.
, and
Bhat
,
S. P.
,
1995
, “
Lyapunov Stability, Semistability, and Asymptotic Stability of Matrix Second-Order Systems
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
145
153
.
12.
Zhao
,
H.
, and
Rahn
,
C. D.
,
2006
, “
On the Control of Axially Moving Material Systems
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
527
531
.
13.
Vatankhah
,
R.
,
Najafi
,
A.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2015
, “
Lyapunov-Based Boundary Control of Strain Gradient Microscale Beams With Exponential Decay Rate
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031003
.
14.
Zhang
,
Y.
,
Yuan
,
J.
,
Liu
,
J.
, and
Shi
,
B.
,
2016
, “
Lyapunov Functions and Sliding Mode Control for Two Degrees-of-Freedom and Multidegrees-of-Freedom Fractional Oscillators
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011014
.
15.
Zhou
,
J.
,
2018
, “
Interpreting Popov Criteria in Luré Systems With Complex Scaling Stability Analysis
,”
Commun. Nonlinear Sci. Numer. Simul.
,
59
, pp.
306
318
.
16.
Patel
,
R.
, and
Toda
,
M.
,
1980
, “
Quantitative Measures of Robustness for Multivariable Systems
,”
Joint Automatic Control Conference
,
San Francisco, CA
,
Aug. 13–15
, No. 17, p.
35
.
17.
Yedavalli
,
R.
,
1985
, “
Improved Measures of Stability Robustness for Linear State Space Models
,”
IEEE Trans. Automat. Contr.
,
30
(
6
), pp.
577
579
.
18.
Zhou
,
K.
, and
Khargonekar
,
P.
,
1987
, “
Stability Robustness Bounds for Linear State-Space Models With Structured Uncertainty
,”
IEEE Trans. Automat. Contr.
,
32
(
7
), pp.
621
623
.
19.
Keel
,
L. H.
,
Bhattacharyya
,
S.
, and
Howze
,
J. W.
,
1988
, “
Robust Control With Structure Perturbations
,”
IEEE Trans. Automat. Contr.
,
33
(
1
), pp.
68
78
.
20.
Kozin
,
F.
,
1969
, “
A Survey of Stability of Stochastic Systems
,”
Automatica
,
5
(
1
), pp.
95
112
.
21.
Bhattacharyya
,
S.
,
Chapellat
,
H.
, and
Keel
,
L.
,
1995
,
Robust Control: The Parametric Approach (Prentice-Hall Information and System Sciences Series)
,
Prentice Hall PTR
,
Hoboken, NJ
.
22.
Vrabel
,
R.
,
2020
, “
Logarithmic Norm-Based Analysis of Robust Asymptotic Stability of Nonlinear Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
80
, p.
104957
.
23.
Quevedo
,
D. E.
, and
Nešić
,
D.
,
2012
, “
Robust Stability of Packetized Predictive Control of Nonlinear Systems With Disturbances and Markovian Packet Losses
,”
Automatica
,
48
(
8
), pp.
1803
1811
.
24.
Hu
,
L.
,
Mao
,
X.
, and
Zhang
,
L.
,
2013
, “
Robust Stability and Boundedness of Nonlinear Hybrid Stochastic Differential Delay Equations
,”
IEEE Trans. Automat. Contr.
,
58
(
9
), pp.
2319
2332
.
25.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2018
, “
An Approximate Analysis of Quasi-Periodic Systems Via Floquét Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021008
.
26.
Sharma
,
A.
, and
Sinha
,
S. C.
,
2019
, “
On Computation of Approximate Lyapunov–Perron Transformations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
59261
,
American Society of Mechanical Engineers
, p.
V006T09A058
.
27.
Sharma
,
A.
,
2020
, “
A Re-Examination of Various Resonances in Parametrically Excited Systems
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031010
.
28.
Sharma
,
A.
, and
Sinha
,
S.
,
2020
, “
Control of Nonlinear Systems Exhibiting Chaos to Desired Periodic or Quasi-Periodic Motions
,”
Nonlinear Dyn.
,
99
(
1
), pp.
559
574
.
29.
Redkar
,
S.
,
2012
, “
Lyapunov Stability of Quasiperiodic Systems
,”
Math. Prob. Eng.
,
2012
, p.
721382
.
30.
Li
,
Z. G.
,
Soh
,
Y. C.
, and
Wen
,
C. Y.
,
2000
, “
Stability of Uncertain Quasi-Periodic Hybrid Dynamic Systems
,”
Int. J. Control
,
73
(
1
), pp.
63
73
.
31.
Tavazoei
,
M.
, and
Asemani
,
M. H.
,
2020
, “
On Robust Stability of Incommensurate Fractional-Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
90
, p.
105344
.
32.
Bhat
,
S. G.
,
Subramanian
,
S. C.
,
Sugar
,
T. S.
, and
Redkar
,
S.
,
2021
, “
Application of Floquet Theory to Human Gait Kinematics and Dynamics
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061003
.
33.
C Subramanian
,
S.
,
Dye
,
M.
, and
Redkar
,
S.
,
2020
, “
Dynamic Analysis of Suction Stabilized Floating Platforms
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
587
.
34.
Redkar
,
S.
,
Liu
,
J.
, and
Sinha
,
S.
,
2012
, “
Stability and Robustness Analysis of a Linear Time-Periodic System Subjected to Random Perturbations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1430
1437
.
35.
De La Fuente
,
J.
,
Subramanian
,
S. C.
,
Sugar
,
T. G.
, and
Redkar
,
S.
,
2020
, “
A Robust Phase Oscillator Design for Wearable Robotic Systems
,”
Rob. Autonom. Syst.
,
128
p.
103514
.
36.
Subramanian
,
S. C.
,
Waswa
,
P. M.
, and
Redkar
,
S.
,
2021
, “
Computation of Lyapunov–Perron Transformation for Linear Quasi-Periodic Systems
,”
J. Vib. Control
.
37.
Subramanian
,
S. C.
, and
Redkar
,
S.
,
2021
, “
Lyapunov-Perron Transformation for Quasi-Periodic Systems and Its Applications
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041015
.
38.
Aburn
,
M.
,
2017
, “
Critical Fluctuations and Coupling of Stochastic Neural Mass Models
,” PhD Thesis, School of Mathematics and Physics, University of Queensland, Australia.
39.
Iakubovich
,
V. A.
, and
Starzhinskiĭ
,
V. M.
,
1975
,
Linear Differential Equations With Periodic Coefficients
, Vol.
2
,
Wiley
,
NY
.
40.
Subramanian
,
S. C.
,
Redkar
,
S.
, and
Waswa
,
P.
,
2020
, “
Lyapunov Perron Transformation for Linear Quasi-Periodic Systems
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)
,
Virtual Online
,
Aug. 17–19
,
The American Society of Mechanical Engineers
, p.
V002T02A003
.
41.
Cherangara Subramanian
,
S.
, and
Redkar
,
S.
,
2020
, “
Comparison of Poincare Normal Forms and Floquet Theory for Analysis of Linear Time Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
014502
.
42.
Jorba
,
À.
, and
Simó
,
C.
,
1992
, “
On the Reducibility of Linear Differential Equations With Quasiperiodic Coefficients
,”
J. Differ. Equ.
,
98
(
1
), pp.
111
124
.
43.
Brogan
,
W.
,
1985
,
Modern Control Theory
(
QPI Series
),
Prentice-Hall
,
Hoboken, NJ
.
44.
Kushner
,
H. J.
,
1967
, “
Stochastic Stability and Control
,” Technical Report,
Brown University
,
Providence, RI
.
45.
Gantmakher
,
F.
,
1990
,
The Theory of Matrices: Volume One
(
The Theory of Matrices
),
Chelsea Publishing Company
,
New York
.
You do not currently have access to this content.