Abstract

Reduced order models (ROMs) provide an efficient, kinematically condensed representation of computationally expensive high-dimensional dynamical systems; however, their accuracy depends crucially on the accurate estimation of their dimension. We here demonstrate how the energy closure criterion, developed in our prior work, can be experimentally implemented to accurately estimate the dimension of ROMs obtained using the proper orthogonal decomposition (POD). We examine the effect of using discrete data with and without measurement noise, as will typically be gathered in an experiment or numerical simulation, on estimating the degree of energy closure on a candidate reduced subspace. To this end, we used a periodically kicked Euler–Bernoulli beam with Rayleigh damping as the model system and studied ROMs obtained by applying POD to discrete displacement field data obtained from simulated numerical experiments. An improved method for quantifying the degree of energy closure is presented: the convergence of energy input to or dissipated from the system is obtained as a function of the subspace dimension, and the dimension capturing a predefined percentage of either energy is selected as the ROM dimension. This method was found to be more robust to data discretization error and measurement noise. The data-processing necessary for the experimental application of energy closure analysis is discussed in detail. We show how ROMs formulated from the simulated data using our approach accurately capture the dynamics of the beam for different sets of parameter values.

References

1.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
2.
Bhattacharyya
,
S.
, and
Cusumano
,
J. P.
,
2020
, “
An Energy Closure Criterion for Model Reduction of a Kicked Euler–Bernoulli Beam
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041001
.
3.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound. Vib.
,
211
(
4
), pp.
607
616
.
4.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering
,
Cambridge University Press
,
Cambridge, UK
.
5.
Liang
,
Y.
,
Lin
,
W.
,
Lee
,
H.
,
Lim
,
S.
,
Lee
,
K.
, and
Sun
,
H.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part II: Model Reduction for MEMS Dynamical Analysis
,”
J. Sound. Vib.
,
256
(
3
), pp.
515
532
.
6.
Liang
,
Y.
,
Lin
,
W.
,
Lee
,
H.
,
Lim
,
S.
,
Lee
,
K.
, and
Sun
,
H.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part II: Model Reduction for MEMS Dynamical Analysis
,”
J. Sound. Vib.
,
256
(
3
), pp.
515
532
.
7.
Cusumano
,
J. P.
,
Sharkady
,
M. T.
, and
Kimble
,
B. W.
,
1994
, “
Experimental Measurements of Dimensionality and Spatial Coherence in the Dynamics of a Flexible-Beam Impact Oscillator
,”
Philos. Trans.: Phys. Sci. Eng.
,
347
(
1683
), pp.
421
438
.
8.
Cusumano
,
J. P.
, and
Bai
,
B. Y.
,
1993
, “
Period-Infinity Periodic Motions, Chaos, and Spatial Coherence in a 10deg of Freedom Impact Oscillator
,”
Chaos, Solitons Fractals
,
3
(
5
), pp.
515
535
.
9.
Sirisup
,
S.
, and
Karniadakis
,
G. E.
,
2004
, “
A Spectral Viscosity Method for Correcting the Long-Term Behavior of Pod Models
,”
J. Comput. Phys.
,
194
(
1
), pp.
92
116
.
10.
Cazemier
,
W.
,
Verstappen
,
R.
, and
Veldman
,
A.
,
1998
, “
Proper Orthogonal Decomposition and Low-Dimensional Models for Driven Cavity Flows
,”
Phys. Fluids.
,
10
(
7
), pp.
1685
1699
.
11.
Couplet
,
M.
,
Sagaut
,
P.
, and
Basdevant
,
C.
,
2003
, “
Intermodal Energy Transfers in a Proper Orthogonal Decomposition–Galerkin Representation of a Turbulent Separated Flow
,”
J. Fluid. Mech.
,
491
, pp.
275
284
.
12.
Bergmann
,
M.
,
Bruneau
,
C.-H.
, and
Iollo
,
A.
,
2009
,
Computational Fluid Dynamics 2008
,
Springer
,
Berlin/Heidelberg
, pp.
779
784
.
13.
Bergmann
,
M.
,
Bruneau
,
C.-H.
, and
Iollo
,
A.
,
2009
, “
Enablers for Robust Pod Models
,”
J. Comput. Phys.
,
228
(
2
), pp.
516
538
.
14.
Borggaard
,
J.
,
Iliescu
,
T.
, and
Wang
,
Z.
,
2011
, “
Artificial Viscosity Proper Orthogonal Decomposition
,”
Math. Comput. Model.
,
53
(
1–2
), pp.
269
279
.
15.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
,
1988
, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid. Mech.
,
192
, pp.
115
173
.
16.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen–Loeve Procedure for Gappy Data
,”
JOSA A
,
12
(
8
), pp.
1657
1664
.
17.
Ravindran
,
S. S.
,
2000
, “
A Reduced-Order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition
,”
Inter. J. Numer. Methods Fluids
,
34
(
5
), pp.
425
448
.
18.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA. J.
,
46
(
7
), pp.
1803
1813
.
19.
Peherstorfer
,
B.
, and
Willcox
,
K.
,
2016
, “
Data-Driven Operator Inference for Nonintrusive Projection-Based Model Reduction
,”
Comput. Methods. Appl. Mech. Eng.
,
306
, pp.
196
215
.
20.
San
,
O.
, and
Iliescu
,
T.
,
2014
, “
Proper Orthogonal Decomposition Closure Models for Fluid Flows: Burgers Equation
,”
Inter. J. Numer. Anal. Model. Seri. B
,
5
, pp.
285
305
.
21.
Ahmed
,
S. E.
,
Pawar
,
S.
,
San
,
O.
,
Rasheed
,
A.
,
Iliescu
,
T.
, and
Noack
,
B. R.
,
2021
, “
On Closures for Reduced Order Models—A Spectrum of First-Principle to Machine-Learned Avenues
,”
Phys. Fluids.
,
33
(
9
), p.
091301
.
22.
Rowley
,
C. W.
,
2005
, “
Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition
,”
Inter. J. Bifurcat. Chaos
,
15
(
3
), pp.
997
1013
.
23.
Willcox
,
K.
, and
Peraire
,
J.
,
2002
, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition
,”
AIAA. J.
,
40
(
11
), pp.
2323
2330
.
24.
Segala
,
D. B.
, and
Chelidze
,
D.
,
2014
, “
Robust and Dynamically Consistent Model Order Reduction for Nonlinear Dynamic Systems
,”
J. Dyn. Syst. Meas. Control.
,
137
(
2
), p.
021011
.
25.
Chelidze
,
D.
,
2014
, “
Identifying Robust Subspaces for Dynamically Consistent Reduced-Order Models
,”
Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series
, G. Kerschen, ed.,
Springer
, Cham, pp.
123
130
.
26.
Ilbeigi
,
S.
, and
Chelidze
,
D.
,
2018
, “
A New Approach to Model Reduction of Nonlinear Control Systems Using Smooth Orthogonal Decomposition
,”
J. Robust. Nonlinear. Control.
,
28
(
15
), pp.
4367
4381
.
27.
Ilbeigi
,
S.
, and
Chelidze
,
D.
,
2017
, “
Persistent Model Order Reduction for Complex Dynamical Systems Using Smooth Orthogonal Decomposition
,”
Mech. Syst. Signal. Process.
,
96
, pp.
125
138
.
28.
Guo
,
X.
, and
Przekop
,
A.
,
2010
, “
Energy-Based Modal Basis Selection Procedure for Reduced-Order Nonlinear Simulation
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Orlando, FL
,
Apr. 12–15
, p.
2796
.
29.
Chatterjee
,
A.
,
Cusumano
,
J. P.
, and
Chelidze
,
D.
,
2002
, “
Optimal Tracking of Parameter Drift in a Chaotic System: Experiment and Theory
,”
J. Sound. Vib.
,
250
(
5
), pp.
877
901
.
30.
Chelidze
,
D.
, and
Zhou
,
W.
,
2006
, “
Smooth Orthogonal Decomposition-Based Vibration Mode Identification
,”
J. Sound. Vib.
,
292
(
3–5
), pp.
461
473
.
31.
Balajewicz
,
M. J.
,
Dowell
,
E. H.
, and
Noack
,
B. R.
,
2013
, “
Low-Dimensional Modelling of High-Reynolds-Number Shear Flows Incorporating Constraints From the Navier–Stokes Equation
,”
J. Fluid. Mech.
,
729
, pp.
285
308
.
32.
Balajewicz
,
M.
,
Tezaur
,
I.
, and
Dowell
,
E.
,
2016
, “
Minimal Subspace Rotation on the Stiefel Manifold for Stabilization and Enhancement of Projection-Based Reduced Order Models for the Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
321
, pp.
224
241
.
33.
Banks
,
H. T.
, and
Inman
,
D. J.
,
1991
, “
On Damping Mechanisms in Beams
,”
J. Appl. Mech.
,
58
(
3
), pp.
716
723
.
34.
Blevins
,
R. D.
,
2016
,
Formulas for Dynamics, Acoustics and Vibration
,
John Wiley and Sons Inc.
,
Chichester, West Sussex, Hoboken, NY
.
35.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston, MA
.
36.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
37.
Penrose
,
R.
,
1955
, “
A Generalized Inverse for Matrices
,”
Math. Proc. Cambridge Philos. Soc.
,
51
(
3
), pp.
406
413
.
38.
Lomax
,
H.
,
Pulliam
,
T. H.
, and
Zingg
,
D. W.
,
2001
,
Fundamentals of Computational Fluid Dynamics
,
Springer-Verlag
,
Berlin/Heidelberg
.
39.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
, Vol.
55
,
US Government Printing Office
,
Washington, DC
.
40.
Lyons
,
R. G.
,
2010
,
Understanding Digital Signal Processing
, 3rd ed.,
Pearson
,
Upper Saddle River, NJ
.
41.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1983
,
Matrix Computations
, Vol.
3
,
Johns Hopkins University Press
,
Baltimore, MA
.
You do not currently have access to this content.