Abstract

Low-frequency vibration suppression is challenging in practical engineering problems due to the harsh requirement for vibration reduction devices, which requires constant low stiffness over a wide amplitude range. A passive tuned mass damper (TMD) composed of a positive stiffness module (PSM) in parallel with a negative stiffness module (NSM) is proposed, which are implemented by serial double-parallelograms (DP) and parallel-DP, respectively. The PSM has a large deflection range of constant stiffness for a given beam length, while the NSM offers negative stiffness within a certain deflection range when applied with axial load above the critical threshold. Based on the closed-form modeling of the stiffness modules using the beam constraint model (BCM), the design and analysis of the PSM and NSM are carried out considering the nonlinearity under large deflections. Afterward, with the structure of TMD implemented, its stiffness characteristics and low-frequency tunability are experimentally validated. Finally, the application on a suspension bridge model shows that a maximum of 29.8-dB vibration reduction of low-frequency mode is attained within the frequency range of interest. The proposed TMD well attenuates the vibrations excited by sweep sinusoidal and harmonic excitations under prespecified threshold levels of acceleration.

References

1.
Den Hartog
,
J. P.
,
1947
,
Mechanical Vibration
,
McGraw-Hill
,
New York
.
2.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
. doi:10.1115/1.3085879
3.
Yang
,
Y.
,
Muñoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
834
842
.
4.
Kolluru
,
K.
,
Axinte
,
D.
, and
Becker
,
A.
,
2013
, “
A Solution for Minimising Vibrations in Milling of Thin Walled Casings by Applying Dampers to Workpiece Surface
,”
CIRP Ann. - Manuf. Technol.
,
62
(
1
), pp.
415
418
.
5.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2006
, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
56
65
.
6.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2015
, “
Design and Implementation of Two-Degree-of-Freedom Tuned Mass Damper in Milling Vibration Mitigation
,”
J. Sound Vib.
,
335
, pp.
78
88
.
7.
Ma
,
W.
,
Yang
,
Y.
, and
Yu
,
J.
,
2019
, “
General Routine of Suppressing Single Vibration Mode by Multi-DOF Tuned Mass Damper: Application of Three-DOF
,”
Mech. Syst. Signal Process
,
121
, pp.
77
96
.
8.
Moradi
,
H.
,
Movahhedy
,
M. R.
, and
Vossoughi
,
G.
,
2012
, “
Tunable Vibration Absorber for Improving Milling Stability With Tool Wear and Process Damping Effects
,”
Mech. Mach. Theory
,
52
, pp.
59
77
.
9.
Munoa
,
J.
,
Iglesias
,
A.
,
Olarra
,
A.
,
Dombovari
,
Z.
,
Zatarain
,
M.
, and
Stepan
,
G.
,
2016
, “
Design of Self-Tuneable Mass Damper for Modular Fixturing Systems
,”
CIRP Ann. - Manuf. Technol.
,
65
(
1
), pp.
389
392
.
10.
Saha
,
A.
, and
Mishra
,
S. K.
,
2019
, “
Adaptive Negative Stiffness Device Based Nonconventional Tuned Mass Damper for Seismic Vibration Control of Tall Buildings
,”
Soil Dyn. Earthq. Eng.
,
126
, p.
105767
.
11.
Rizos
,
D.
,
Feltrin
,
G.
, and
Motavalli
,
M.
,
2011
, “
Structural Identification of a Prototype Pre-Stressable Leaf-Spring Based Adaptive Tuned Mass Damper: Nonlinear Characterization and Classification
,”
Mech. Syst. Signal Process
,
25
(
1
), pp.
205
221
.
12.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
13.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
14.
Sarlis
,
A. A.
,
Pasala
,
D. T. R.
,
Constantinou
,
M. C.
,
Reinhorn
,
A. M.
,
Nagarajaiah
,
S.
, and
Taylor
,
D. P.
,
2013
, “
Negative Stiffness Device for Seismic Protection of Structures
,”
J. Struct. Eng. (U.S)
,
139
(
7
), pp.
1124
1133
.
15.
Sun
,
X.
, and
Jing
,
X.
,
2016
, “
A Nonlinear Vibration Isolator Achieving High-Static-Low-Dynamic Stiffness and Tunable Anti-Resonance Frequency Band
,”
Mech. Syst. Signal Process
,
80
, pp.
166
188
.
16.
Sun
,
M.
,
Song
,
G.
,
Li
,
Y.
, and
Huang
,
Z.
,
2019
, “
Effect of Negative Stiffness Mechanism in a Vibration Isolator With Asymmetric and High-Static-Low-Dynamic Stiffness
,”
Mech. Syst. Signal Process
,
124
, pp.
388
407
.
17.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
18.
Churchill
,
C. B.
,
Shahan
,
D. W.
,
Smith
,
S. P.
,
Keefe
,
A. C.
, and
McKnight
,
G. P.
,
2016
, “
Materials Engineering: Dynamically Variable Negative Stiffness Structures
,”
Sci. Adv.
,
2
(
2
), p.
e1500778
.
19.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
, and
Ouyang
,
H.
,
2017
, “
Multi-Low-Frequency Flexural Wave Attenuation in Euler–Bernoulli Beams Using Local Resonators Containing Negative-Stiffness Mechanisms
,”
Phys. Lett. A: Gen. At. Solid State Phys.
,
381
(
37
), pp.
3141
3148
. doi:10.1016/j.physleta.2017.08.020.
20.
Chang
,
Y.
,
Zhou
,
J.
,
Wang
,
K.
, and
Xu
,
D.
,
2021
, “
A Quasi-Zero-Stiffness Dynamic Vibration Absorber
,”
J. Sound Vib.
,
494
, p.
115859
.
21.
Wang
,
K.
,
Zhou
,
J.
,
Ouyang
,
H.
,
Chang
,
Y.
, and
Xu
,
D.
,
2021
, “
A Dual Quasi-Zero-Stiffness Sliding-Mode Triboelectric Nanogenerator for Harvesting Ultralow-Low Frequency Vibration Energy
,”
Mech. Syst. Signal Process
,
151
, p.
107368
.
22.
Oyelade
,
A. O.
,
Wang
,
Z.
, and
Hu
,
G.
,
2017
, “
Dynamics of 1D Mass–Spring System With a Negative Stiffness Spring Realized by Magnets: Theoretical and Experimental Study
,”
Theor. Appl. Mech. Lett.
,
7
(
1
), pp.
17
21
.
23.
Lo Feudo
,
S.
,
Touzé
,
C.
,
Boisson
,
J.
, and
Cumunel
,
G.
,
2019
, “
Nonlinear Magnetic Vibration Absorber for Passive Control of a Multi–Storey Structure
,”
J. Sound Vib.
,
438
, pp.
33
53
.
24.
Weber
,
F.
,
2014
, “
Semi-Active Vibration Absorber Based on Real-Time Controlled MR Damper
,”
Mech. Syst. Signal Process
,
46
(
2
), pp.
272
288
.
25.
Yuan
,
L.
,
Sun
,
S.
,
Pan
,
Z.
,
Ding
,
D.
,
Gienke
,
O.
, and
Li
,
W.
,
2019
, “
Mode Coupling Chatter Suppression for Robotic Machining Using Semi-Active Magnetorheological Elastomers Absorber
,”
Mech. Syst. Signal Process
,
117
, pp.
221
237
.
26.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p. 031009.
27.
Ebrahimzade
,
N.
,
Dardel
,
M.
, and
Shafaghat
,
R.
,
2016
, “
Performance Comparison of Linear and Nonlinear Vibration Absorbers in Aeroelastic Characteristics of a Wing Model
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1075
1094
.
28.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
29.
Zhao
,
H.
,
Han
,
D.
,
Zhang
,
L.
, and
Bi
,
S.
,
2017
, “
Design of a Stiffness-Adjustable Compliant Linear-Motion Mechanism
,”
Precis. Eng.
,
48
, pp.
305
314
.
30.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
31.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p. 022301.
32.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p. 014501.
33.
Schmitz
,
T. L.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann. - Manuf. Technol.
,
49
(
1
), pp.
303
308
.
You do not currently have access to this content.