Abstract

The bistable nonlinear energy sink (NES) shows high efficiency in mitigating vibration through targeted energy transfer (TET). It performs well in low- and high-energy input cases, whereas, for a cubic NES, TET occurs only above a certain energy threshold. In this work, the measure of energy pumping time is extended to a harmonic excitation case by the application of a particular integration assumption. An equivalent point in the slow invariant manifold (SIM) structure can represent the average variation of the amplitudes of linear oscillator (LO) and NES. The marked robustness of this semi-analytical prediction method under parameter perturbation is investigated numerically here. The influence of parameters on the rate at which the amplitude declines is also investigated for both impulsive and harmonic excitation. The pumping time estimation is validated in a low-energy input experimental test.

References

1.
Vakakis
,
A.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
2.
Gourc
,
E.
,
Seguy
,
S.
,
Michon
,
G.
,
Berlioz
,
A.
, and
Mann
,
B.
,
2015
, “
Quenching Chatter Instability in Turning Process With a Vibro-Impact Nonlinear Energy Sink
,”
J. Sound. Vib.
,
355
, pp.
392
406
.
3.
Bergeot
,
B.
,
Bellizzi
,
S.
, and
Cochelin
,
B.
,
2017
, “
Passive Suppression of Helicopter Ground Resonance Using Nonlinear Energy Sinks Attached on the Helicopter Blades
,”
J. Sound. Vib.
,
392
, pp.
41
55
.
4.
Ahmadabadi
,
Z. N.
, and
Khadem
,
S.
,
2014
, “
Nonlinear Vibration Control and Energy Harvesting of a Beam Using a Nonlinear Energy Sink and a Piezoelectric Device
,”
J. Sound. Vib.
,
333
(
19
), pp.
4444
4457
.
5.
Kremer
,
D.
, and
Liu
,
K.
,
2017
, “
A Nonlinear Energy Sink With an Energy Harvester: Harmonically Forced Responses
,”
J. Sound. Vib.
,
410
, pp.
287
302
.
6.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C.-H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound. Vib.
,
300
(
3–5
), pp.
522
551
.
7.
Tripathi
,
A.
,
Grover
,
P.
, and
Kalmár-Nagy
,
T.
,
2017
, “
On Optimal Performance of Nonlinear Energy Sinks in Multiple-Degree-of-Freedom Systems
,”
J. Sound. Vib.
,
388
, pp.
272
297
.
8.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
9.
Bellet
,
R.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2010
, “
Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber
,”
J. Sound. Vib.
,
329
(
14
), pp.
2768
2791
.
10.
Gendelman
,
O.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1
), pp.
31
46
.
11.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2008
, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Physica D
,
237
(
13
), pp.
1719
1733
.
12.
Gendelman
,
O.
,
2011
, “
Targeted Energy Transfer in Systems With External and Self-Excitation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
225
(
9
), pp.
2007
2043
.
13.
Jiang
,
X.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
.
14.
McFarland
,
D. M.
,
Kerschen
,
G.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Investigation of Targeted Energy Transfers in Strongly and Nonlinearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
118
(
2
), pp.
791
799
.
15.
Qiu
,
D.
,
Paredes
,
M.
, and
Seguy
,
S.
,
2019
, “
Variable Pitch Spring for Nonlinear Energy Sink: Application to Passive Vibration Control
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
2
), pp.
611
622
.
16.
Manevitch
,
L.
,
2001
, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables
,”
Nonlinear Dyn.
,
25
(
1
), pp.
95
109
.
17.
Romeo
,
F.
,
Manevitch
,
L.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2015
, “
Transient and Chaotic Low-Energy Transfers in a System With Bistable Nonlinearity
,”
Chaos
,
25
(
5
), p.
053109
.
18.
Qiu
,
D.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Tuned Nonlinear Energy Sink With Conical Spring: Design Theory and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011404
.
19.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2017
, “
On the Dynamics Around Targeted Energy Transfer for Vibro-Impact Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1453
1466
.
20.
Qiu
,
D.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2019
, “
Design Criteria for Optimally Tuned Vibro-Impact Nonlinear Energy Sink
,”
J. Sound. Vib.
,
442
, pp.
497
513
.
21.
Youssef
,
B.
, and
Leine
,
R. I.
,
2021
, “
A Complete Set of Design Rules for a Vibro-Impact NES Based on a Multiple Scales Approximation of a Nonlinear Mode
,”
J. Sound. Vib.
,
501
, p.
116043
.
22.
Wang
,
J.
,
Zhang
,
C.
,
Li
,
H.
, and
Liu
,
Z.
,
2021
, “
Experimental and Numerical Studies of a Novel Track Bistable Nonlinear Energy Sink With Improved Energy Robustness for Structural Response Mitigation
,”
Eng. Struct.
,
237
, p.
112184
.
23.
Zang
,
J.
,
Cao
,
R.-Q.
, and
Zhang
,
Y.-W.
,
2021
, “
Steady-State Response of a Viscoelastic Beam With Asymmetric Elastic Supports Coupled to a Lever-Type Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1327
1341
.
24.
Al-Shudeifat
,
M.
, and
Saeed
,
A.
,
2022
, “
Periodic Motion and Frequency Energy Plots of Dynamical Systems Coupled With Piecewise Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear. Dyn.
,
17
(
4
), p.
041005
.
25.
Saeed
,
A. S.
,
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Cantwell
,
W. J.
,
2020
, “
Rotary-Impact Nonlinear Energy Sink for Shock Mitigation: Analytical and Numerical Investigations
,”
Arch. Appl. Mech.
,
90
(
3
), pp.
495
521
.
26.
Saeed
,
A. S.
,
AL-Shudeifat
,
M. A.
, and
Vakakis
,
A. F.
,
2019
, “
Rotary-Oscillatory Nonlinear Energy Sink of Robust Performance
,”
Int. J. Non-Linear Mech.
,
117
(
3–5
), p.
103249
.
27.
Gendelman
,
O.
,
Sigalov
,
G.
,
Manevitch
,
L.
,
Mane
,
M.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
.
28.
Wu
,
Z.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2021
, “
Basic Constraints for Design Optimization of Cubic and Bistable Nonlinear Energy Sink
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021003
.
29.
Al-Shudeifat
,
M. A.
, and
Saeed
,
A. S.
,
2021
, “
Frequency–Energy Plot and Targeted Energy Transfer Analysis of Coupled Bistable Nonlinear Energy Sink With Linear Oscillator
,”
Nonlinear Dyn.
,
105
(
4
), pp.
2877
2898
.
30.
Qiu
,
D.
,
Li
,
T.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Efficient Targeted Energy Transfer of Bistable Nonlinear Energy Sink: Application to Optimal Design
,”
Nonlinear Dyn.
,
92
(
2
), pp.
443
461
.
31.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
783
806
.
32.
AL-Shudeifat
,
M. A.
, and
Saeed
,
A. S.
,
2021
, “
Comparison of a Modified Vibro-Impact Nonlinear Energy Sink With Other Kinds of Ness
,”
Meccanica
,
56
(
4
), pp.
735
752
.
33.
Dekemele
,
K.
,
De Keyser
,
R.
, and
Loccufier
,
M.
,
2018
, “
Performance Measures for Targeted Energy Transfer and Resonance Capture Cascading in Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
93
(
2
), pp.
259
284
.
34.
Dekemele
,
K.
,
Van Torre
,
P.
, and
Loccufier
,
M.
,
2019
, “
Performance and Tuning of a Chaotic Bi-Stable NES to Mitigate Transient Vibrations
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1831
1851
.
35.
Nguyen
,
T. A.
, and
Pernot
,
S.
,
2012
, “
Design Criteria for Optimally Tuned Nonlinear Energy Sinks—Part 1: Transient Regime
,”
Nonlinear Dyn.
,
69
(
1
), pp.
1
19
.
You do not currently have access to this content.