Abstract

Scattering of an elastic wave by cavities yields dynamic stress concentration around the cavities. When the characteristic size of the cavities shrinks to the nanometer scale, the surface effect becomes prominent. Based on a recently proposed theory of surface elastodynamics, the dynamic stress concentration factor (DSCF) in the scattering of a plane P-wave by a spherical nanocavity has been investigated. Not only the surface energy effect but also the surface inertial effect is considered. The former depends on two easily determined surface material parameters, namely, the bulk surface energy density and the surface relaxation parameter, whereas the latter is related to the surface mass density. Interestingly, due to the surface relaxation of nanocavity, a constant elastic field exists in the elastic medium even without any dynamic loadings. Furthermore, it is found that when the radius of the cavity is at the nanoscale, the surface energy effect as well as the surface inertial effect has a significant influence on DSCF. The former attenuates the maximum DSCF, whereas the latter enhances it. With the increasing incident P-wave frequency, the dominant role transits from the surface energy effect to the surface inertial effect. This indicates that the DSCF around the nanocavity can be properly tuned by adjusting the incident wave frequency, the cavity radius, and the surface material parameters. The results can not only enable a deeper understanding of the surface effects on DSCF around the nanocavities but also provide a guide for designing nanoporous materials exhibiting efficient dynamic performance.

References

1.
Tiwari
,
K. A.
,
Raisutis
,
R.
, and
Samaitis
,
V.
,
2017
, “
Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures
,”
Sensors
,
17
(
12
), pp.
1
21
.
2.
Na
,
Y.
,
Agnhage
,
T.
, and
Cho
,
G.
,
2012
, “
Sound Absorption of Multiple Layers of Nanofiber Webs and the Comparison of Measuring Methods for Sound Absorption Coefficients
,”
Fibers Polym.
,
13
(
10
), pp.
1348
1352
.
3.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
4.
Pao
,
Y. H.
, and
Mow
,
C. C.
,
1973
,
The Diffraction of Elastic Waves and Dynamic Stress Concentration
,
Crane, Russak
,
New York
.
5.
Surani
,
F. B.
,
Kong
,
X.
,
Panchal
,
D. B.
, and
Yu
,
Q.
,
2005
, “
Energy Absorption of a Nano Porous System Subjected to Dynamic Loadings
,”
Appl. Phys. Lett.
,
87
(
16
), p.
151919
.
6.
Ulrichs
,
H.
,
Meyer
,
D.
,
Döring
,
F.
,
Eberl
,
C.
, and
Krebs
,
H.-U.
,
2017
, “
Spectral Control of Elastic Dynamics in Metallic Nano-cavities
,”
Sci. Rep.
,
7
(
1
), p.
10600
.
7.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
8.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
9.
Ansari
,
R.
, and
Gholami
,
R.
,
2016
, “
Surface Effect on the Large Amplitude Periodic Forced Vibration of First-Order Shear Deformable Rectangular Nanoplates With Various Edge Supports
,”
Acta Astronaut.
,
118
, pp.
72
89
.
10.
Peng
,
X. L.
, and
Huang
,
G. Y.
,
2013
, “
Elastic Vibrations of a Cylindrical Nanotube With the Effect of Surface Stress and Surface Inertia
,”
Physica E Low Dimens. Syst. Nanostruct.
,
54
(
8
), pp.
98
102
.
11.
Qiang
,
F.
,
Wei
,
P.
, and
Liu
,
X.
,
2013
, “
Propagation of Elastic Wave in Nanoporous Material With Distributed Cylindrical Nanoholes,”
Sci. China: Phys. Mech. Astron.
,
56
(
8
), pp.
1542
1550
.
12.
Wu
,
W.
,
Zhang
,
H.
,
Jia
,
F.
,
Yang
,
X.
,
Liu
,
H.
,
Yuan
,
W.
,
Feng
,
X.-Q.
, and
Gu
,
B.
,
2020
, “
Surface Effects on Frequency Dispersion Characteristics of Lamb Waves in a Nanoplate
,”
Thin Solid Films
,
697
, p.
137831
.
13.
Wang
,
X.
,
Li
,
P.
, and
Jin
,
F.
,
2019
, “
A Generalized Dynamic Model of Nanoscale Surface Acoustic Wave Sensors and Its Applications in Love Wave Propagation and Shear-Horizontal Vibration
,”
Appl. Math. Model.
,
75
, pp.
101
115
.
14.
Wang
,
G.
,
2008
, “
Diffraction of Shear Waves by a Nanosized Spherical Cavity
,”
J. Appl. Phys.
,
103
(
5
), p.
053519
.
15.
Wang
,
G. F.
,
Wang
,
T. J.
, and
Feng
,
X. Q.
,
2006
, “
Surface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Circular Hole
,”
Appl. Phys. Lett.
,
89
(
23
), p.
231923
.
16.
Zhang
,
Q.
,
Wang
,
G.
, and
Schiavone
,
P.
,
2011
, “
Diffraction of Plane Compressional Waves by an Array of Nanosized Cylindrical Holes
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021003
.
17.
Ru
,
Y.
,
Wang
,
G. F.
,
Su
,
L. C.
, and
Wang
,
T. J.
,
2013
, “
Scattering of Vertical Shear Waves by a Cluster of Nanosized Cylindrical Holes With Surface Effect
,”
Acta Mech.
,
224
(
5
), pp.
935
944
.
18.
Liu
,
W.
,
Chen
,
J.
,
Liu
,
Y.
, and
Su
,
X.
,
2012
, “
Effect of Interface/Surface Stress on the Elastic Wave Band Structure of Two-Dimensional Phononic Crystals
,”
Phys. Lett. A
,
376
(
4
), pp.
605
609
.
19.
Qiang
,
F.
, and
Wei
,
P.
,
2015
, “
Effective Dynamic Properties of Random Nanoporous Materials With Consideration of Surface Effects
,”
Acta Mech.
,
226
(
4
), pp.
1201
1212
.
20.
Parvanova
,
S.
,
Vasilev
,
G.
, and
Dineva
,
P.
,
2017
, “
Elastic Wave Scattering and Stress Concentration in a Finite Anisotropic Solid With Nano-cavities
,”
Arch. Appl. Mech.
,
87
(
12
), pp.
1947
1964
.
21.
Parvanova
,
S. L.
,
Manolis
,
G. D.
, and
Dineva
,
P. S.
,
2015
, “
Wave Scattering by Nanoheterogeneities Embedded in an Elastic Matrix via BEM
,”
Eng. Anal. Bound. Elem.
,
56
, pp.
57
69
.
22.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.
23.
Ghavanloo
,
E.
,
Fazelzadeh
,
S. A.
, and
Rafii-Tabar
,
H.
,
2014
, “
Nonlocal Continuum-Based Modeling of Breathing Mode of Nanowires Including Surface Stress and Surface Inertia Effects
,”
Phys. B
,
440
, pp.
43
47
.
24.
Peng
,
S. Z.
,
2005
, “
Flexural Wave Scattering and Dynamic Stress Concentration in a Heterogeneous Plate With Multiple Cylindrical Patches by Acoustical Wave Propagator Technique
,”
J. Sound Vib.
,
286
(
4
), pp.
729
743
.
25.
Shodja
,
H. M.
,
Ghafarollahi
,
A.
, and
Enzevaee
,
C.
,
2017
, “
Surface/Interface Effect on the Scattering of Love Waves by a Nano-size Surface-Breaking Crack Within an Ultra-thin Layer Bonded to an Elastic Half-Space
,”
Int. J. Solids Struct.
,
108
, pp.
63
73
.
26.
Chen
,
S. H.
, and
Yao
,
Y.
,
2014
, “
Elastic Theory of Nanomaterials Based on Surface-Energy Density
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121002
.
27.
Yao
,
Y.
,
Chen
,
S.
, and
Fang
,
D.
,
2017
, “
An Interface Energy Density-Based Theory Considering the Coherent Interface Effect in Nanomaterials
,”
J. Mech. Phys. Solids
,
99
, pp.
321
337
.
28.
Brady
,
G. S.
,
Clauser
,
H. R.
, and
Vaccari
,
J. A.
,
2002
,
Materials Handbook
,
McGraw-Hill Professional
,
New York
.
29.
Lamber
,
R.
,
Wetjen
,
S.
, and
Jaeger
,
N. I.
,
1995
, “
Size Dependence of the Lattice Parameter of Small Palladium Particles
,”
Phys. Rev. B
,
51
(
16
), pp.
10968
10971
.
30.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollár
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(
1–2
), pp.
186
202
.
31.
Woltersdorf
,
J.
,
Nepijko
,
A. S.
, and
Pippel
,
E.
,
1981
, “
Dependence of Lattice Parameters of Small Particles on the Size of the Nuclei
,”
Surf. Sci.
,
106
(
106
), pp.
64
69
.
32.
Zhang
,
C.
,
Yao
,
Y.
, and
Chen
,
S.
,
2014
, “
Size-Dependent Surface Energy Density of Typically FCC Metallic Nanomaterials
,”
Comput. Mater. Sci.
,
82
(
3
), pp.
372
377
.
33.
Jia
,
N.
,
Peng
,
Z.
,
Yao
,
Y.
, and
Chen
,
S.
,
2020
, “
A Surface Energy Density-Based Theory of Nanoelastic Dynamics and Its Application in the Scattering of P-Wave by a Cylindrical Nanocavity
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101001
.
34.
Enzevaee
,
C.
, and
Shodja
,
H. M.
,
2018
, “
Crystallography and Surface Effects on the Propagation of Love and Rayleigh Surface Waves in FCC Semi-infinite Solids
,”
Int. J. Solids Struct.
,
138
, pp.
109
117
.
35.
Yao
,
Y.
,
Yang
,
Y.
, and
Chen
,
S.
,
2017
, “
Size-Dependent Elasticity of Nanoporous Materials Predicted by Surface Energy Density-Based Theory
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061004
.
36.
Wolfer
,
W. G.
,
2011
, “
Elastic Properties of Surfaces on Nanoparticles
,”
Acta Mater.
,
59
(
20
), pp.
7736
7743
.
37.
Mow
,
C. C.
, and
Mente
,
L. J.
,
1963
, “
Dynamic Stresses and Displacements Around Cylindrical Discontinuities Due to Plane Harmonic Shear Waves
,”
ASME J. Appl. Mech.
,
30
(
4
), pp.
598
604
.
38.
Jiang
,
Q.
,
Liang
,
L.
, and
Zhao
,
D.
,
2001
, “
Lattice Contraction and Surface Stress of FCC Nanocrystals
,”
J. Phys. Chem. B
,
105
(
27
), pp.
6275
6277
.
39.
Qi
,
W.
, and
Wang
,
M.
,
2004
, “
Size and Shape Dependent Melting Temperature of Metallic Nanoparticles
,”
Mater. Chem. Phys.
,
88
(
2
), pp.
280
284
.
40.
Wang
,
G. F.
,
2007
, “
Diffraction of Plane Compressional Wave by a Nanosized Spherical Cavity With Surface Effects
,”
Appl. Phys. Lett.
,
90
(
21
), p.
211907
.
You do not currently have access to this content.