Abstract

This paper proposes a new computationally efficient methodology for random vibrations of nonlinear vibratory systems using a time-dependent second-order adjoint variable (AV2) method and a second-order projected differentiation (PD2) method. The proposed approach is called AV2–PD2. The vibratory system can be excited by stationary Gaussian or non-Gaussian random processes following the traditional translation process model. A Karhunen–Loeve (KL) expansion expresses each input random process in terms of standard normal random variables. A second-order adjoint approach is used to obtain the required first- and second-order output derivatives accurately by solving as many sets of equations of motion (EOMs) as the number of KL random variables. These derivatives are used to compute the marginal cumulative distribution function (CDF) of the output process with second-order accuracy. Then, a second-order projected differentiation method calculates the autocorrelation function of each output process with second-order accuracy, at an additional cost of solving as many sets of EOMs as the number of outputs of interest, independently of the time horizon (simulation time). The total number of solutions of the EOM scales linearly with the number of input KL random variables and the number of output processes. The efficiency and accuracy of the proposed approach are demonstrated using a nonlinear Duffing oscillator problem under a quadratic random excitation and a nonlinear half-car suspension example.

References

1.
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
,
2002
, “
Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
32
), pp.
3491
3507
.
2.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
3.
Mourelatos
,
Z. P.
,
Majcher
,
M.
, and
Geroulas
,
V.
,
2016
, “
Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031007
.
4.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscipl. Optim.
,
48
(
5
), pp.
893
907
.
5.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
6.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
7.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
.
8.
Grigoriu
,
M.
,
1998
, “
Simulation of Stationary Non-Gaussian Translation Processes
,”
J. Eng. Mech.
,
124
(
2
), pp.
121
126
.
9.
Grigoriu
,
M.
,
2007
, “
Parametric Translation Models for Stationary Non-Gaussian Processes and Fields
,”
J. Sound Vib.
,
303
(
3
), pp.
428
439
.
10.
Grigoriu
,
M.
,
2009
, “
Existence and Construction of Translation Models for Stationary Non-Gaussian Processes
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
545
551
.
11.
Shields
,
M.
,
Deodatis
,
G.
, and
Bocchini
,
P.
,
2011
, “
A Simple and Efficient Methodology to Approximate a General Non-Gaussian Stationary Stochastic Process by a Translation Process
,”
Probab. Eng. Mech.
,
26
(
4
), pp.
511
519
.
12.
Johnson
,
N. L.
,
1949
, “
Systems of Frequency Curves Generated by Methods of Translation
,”
Biometrika
,
36
(
1–2
), pp.
149
176
.
13.
Hill
,
I. D.
,
Hill
,
R.
, and
Holder
,
R. L.
,
1976
, “
Algorithm AS 99: Fitting Johnson Curves by Moments
,”
J. R. Stat. Soc., Ser. C: Appl. Stat.
,
25
(
2
), pp.
180
189
.
14.
Geroulas
,
V.
,
Mourelatos
,
Z. P.
,
Tsianika
,
V.
, and
Baseski
,
I.
,
2018
, “
Reliability Analysis of Nonlinear Vibratory Systems Under Non-Gaussian Loads
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021404
.
15.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
,
Patil
,
S.
,
Hu
,
Z.
,
Geroulas
,
V.
, and
Tsianika
,
V.
,
2019
, “
Reliability Analysis of Nonlinear Vibratory Systems Under Non-Gaussian Loads Using a Sensitivity-Based Propagation of Moments
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061704
.
16.
Papadimitriou
,
D.
,
Mourelatos
,
Z. P.
, and
Hu
,
Z.
,
2021
, “
Reliability Analysis and Random Vibration of Nonlinear Systems Using the Adjoint Method and Projected Differentiation
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061705
.
17.
Papadimitriou
,
D.
, and
Mourelatos
,
Z. P.
,
2018
, “
Reliability-Based Topology Optimization Using Mean-Value Second-Order Saddlepoint Approximation
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031403
.
18.
Phoon
,
K. K.
,
Huang
,
H. W.
, and
Quek
,
S. T.
,
2005
, “
Simulation of Strongly Non-Gaussian Processes Using Karhunen–Loeve Expansion
,”
Probab. Eng. Mech.
,
20
(
2
), pp.
188
198
.
19.
James
,
K. A.
, and
Waisman
,
H.
,
2015
, “
Topology Optimization of Viscoelastic Structures Using a Time-Dependent Adjoint Method
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
166
187
.
20.
Min
,
S.
,
Kikuchi
,
N.
,
Park
,
Y.
,
Kim
,
S.
, and
Chang
,
S.
,
1999
, “
Optimal Topology Design of Structures Under Dynamic Loads
,”
Struct. Optim.
,
17
(
2–3
), pp.
208
218
.
21.
Rong
,
J.
,
Xie
,
Y.
,
Yang
,
X.
, and
Liang
,
Q.
,
2000
, “
Topology Optimization of Structures Under Dynamic Response Constraints
,”
J. Sound Vib.
,
234
(
2
), pp.
177
189
.
22.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1
), pp.
259
280
.
23.
Shu
,
L.
,
Wang
,
M. Y.
, and
Ma
,
Z.
,
2014
, “
Level Set Based Topology Optimization of Vibrating Structures for Coupled Acoustic-Structural Dynamics
,”
Comput. Struct.
,
132
, pp.
34
42
.
24.
Molter
,
A.
,
da Silveira
,
O. A.
,
Bottega
,
V.
, and
Fonseca
,
J. S.
,
2013
, “
Integrated Topology Optimization and Optimal Control for Vibration Suppression in Structural Design
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
389
397
.
25.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2008
, “
Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches
,”
Arch. Comput. Methods Eng.
,
15
(
4
), pp.
447
488
.
26.
Papadimitriou
,
D.
,
Panagiotopoulos
,
D.
,
Mourelatos
,
Z. P.
, and
Skarakis
,
J.
,
2019
, “
Reliability Analysis of Problems With Correlated, Non-Gaussian Uncertainties Using Second-Order Propagation of High-Order Statistics
,”
Proceedings of the AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0439
.
27.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
, and
Hu
,
Z.
,
2019
, “
Reliability Analysis Using Second-Order Saddlepoint Approximation and Mixture Distributions
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021401
.
28.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications, Inc.
,
Mineola, NY
.
29.
Gandhi
,
P.
,
Adarsh
,
S.
, and
Ramachandran
,
K. I.
,
2017
, “
Performance Analysis of Half Car Suspension Model With 4 DOF Using PID, LQR, FUZZY and ANFIS Controllers
,”
Procedia Comput. Sci.
,
115
, pp.
2
13
.
You do not currently have access to this content.