Abstract

The inerter has been integrated into various vibration mitigation devices, whose mass amplification effect could enhance the suppression capabilities of these devices. In the current study, the inerter is integrated with a pendulum vibration absorber, referred to as inerter pendulum vibration absorber (IPVA). To demonstrate its efficacy, the IPVA is integrated with a linear, harmonically forced oscillator seeking vibration mitigation. A theoretical investigation is conducted to understand the nonlinear response of the IPVA. It is shown that the IPVA operates based on a nonlinear energy transfer phenomenon wherein the energy of the linear oscillator transfers to the pendulum vibration absorber as a result of parametric resonance of the pendulum. The parametric instability is predicted by the harmonic balance method along with the Floquet theory. A perturbation analysis shows that a pitchfork bifurcation and period doubling bifurcation are necessary and sufficient conditions for the parametric resonance to occur. An arc-length continuation scheme is used to predict the boundary of parametric instability in the parameter space and verify the perturbation analysis. The effects of various system parameters on the parametric instability are examined. Finally, the IPVA is compared with a linear benchmark and an autoparametric vibration absorber and shows more efficacious vibration suppression.

References

1.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
3
, pp.
361
391
.
2.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.
3.
Lazar
,
I.
,
Neild
,
S.
, and
Wagg
,
D.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.
4.
Lazar
,
I.
,
Neild
,
S.
, and
Wagg
,
D.
,
2016
, “
Vibration Suppression of Cables Using Tuned Inerter Dampers
,”
Eng. Struct.
,
122
, pp.
62
71
.
5.
Qian
,
F.
,
Luo
,
Y.
,
Sun
,
H.
,
Tai
,
W. C.
, and
Zuo
,
L.
,
2019
, “
Optimal Tuned Inerter Dampers for Performance Enhancement of Vibration Isolation
,”
Eng. Struct.
,
198
, p.
109464
.
6.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probabilistic. Eng. Mech.
,
38
, pp.
156
164
.
7.
De Domenico
,
D.
, and
Ricciardi
,
G.
,
2018
, “
An Enhanced Base Isolation System Equipped With Optimal Tuned Mass Damper Inerter (TMDI)
,”
Earthquake Eng. Struct. Dyn.
,
47
(
5
), pp.
1169
1192
.
8.
Joubaneh
,
E. F.
, and
Barry
,
O. R.
,
2019
, “
On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061007
.
9.
Tai
,
W.-C.
,
2020
, “
Optimum Design of a New Tuned Inerter-Torsional-Mass-Damper Passive Vibration Control for Stochastically Motion-Excited Structures
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011015
.
10.
Qian
,
F.
, and
Zuo
,
L.
,
2021
, “
Tuned Nonlinear Spring-Inerter-Damper Vibration Absorber for Beam Vibration Reduction Based on the Exact Nonlinear Dynamics Model
,”
J. Sound. Vib.
,
509
, p.
116246
.
11.
Kakou
,
P.
, and
Barry
,
O.
,
2021
, “
Simultaneous Vibration Reduction and Energy Harvesting of a Nonlinear Oscillator Using a Nonlinear Electromagnetic Vibration Absorber-inerter
,”
Mech. Syst. Signal. Process.
,
156
, p.
107607
.
12.
Yang
,
J.
,
Jiang
,
J. Z.
, and
Neild
,
S. A.
,
2020
, “
Dynamic Analysis and Performance Evaluation of Nonlinear Inerter-Based Vibration Isolators
,”
Nonlinear Dyn.
,
99
, pp.
1823
1839
.
13.
Hatwal
,
H.
,
Mallik
,
A.
, and
Ghosh
,
A.
,
1983
, “
Forced Nonlinear Oscillations of An Autoparametric System–Part 1: Periodic Responses
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
657
662
.
14.
Vyas
,
A.
, and
Bajaj
,
A.
,
2001
, “
Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulums
,”
J. Sound. Vib.
,
246
(
1
), pp.
115
135
.
15.
Bajaj
,
A.
,
Chang
,
S.
, and
Johnson
,
J.
,
1994
, “
Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System
,”
Nonlinear Dyn.
,
5
(
4
), pp.
433
457
.
16.
Hatwal
,
H.
,
Mallik
,
A.
, and
Ghosh
,
A.
,
1982
, “
Non-Linear Vibrations of a Harmonically Excited Autoparametric System
,”
J. Sound. Vib.
,
81
(
2
), pp.
153
164
.
17.
Song
,
Y.
,
Sato
,
H.
,
Iwata
,
Y.
, and
Komatsuzaki
,
T.
,
2003
, “
The Response of a Dynamic Vibration Absorber System With a Parametrically Excited Pendulum
,”
J. Sound. Vib.
,
259
(
4
), pp.
747
759
.
18.
Warminski
,
J.
, and
Kecik
,
K.
,
2009
, “
Instabilities in the Main Parametric Resonance Area of a Mechanical System With a Pendulum
,”
J. Sound. Vib.
,
322
(
3
), pp.
612
628
.
19.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2015
, “
Energy Harvesting From an Autoparametric Vibration Absorber
,”
Smart Mater. Struct.
,
24
(
11
), p.
115012
.
20.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2017
, “
Nonlinear Performances of an Autoparametric Vibration-Based Piezoelastic Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
2
), pp.
254
271
.
21.
Kecik
,
K.
,
2018
, “
Assessment of Energy Harvesting and Vibration Mitigation of a Pendulum Dynamic Absorber
,”
Mech. Syst. Signal. Process.
,
106
, pp.
198
209
.
22.
Felix
,
J. L. P.
,
Balthazar
,
J. M.
,
Rocha
,
R. T.
,
Tusset
,
A. M.
, and
Janzen
,
F. C.
,
2018
, “
On Vibration Mitigation and Energy Harvesting of a Non-Ideal System With Autoparametric Vibration Absorber System
,”
Meccanica
,
53
(
13
), pp.
3177
3188
.
23.
Tan
,
T.
,
Yan
,
Z.
,
Zou
,
Y.
, and
Zhang
,
W.
,
2019
, “
Optimal Dual-Functional Design for a Piezoelectric Autoparametric Vibration Absorber
,”
Mech. Syst. Signal. Process.
,
123
, pp.
513
532
.
24.
Sharif-Bakhtiar
,
M.
, and
Shaw
,
S.
,
1992
, “
Effects of Nonlinearities and Damping on the Dynamic Response of a Centrifugal Pendulum Vibration Absorber
,”
ASME J. Vib. Acoust.
,
114
(
3
), pp.
305
311
.
25.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods. Appl. Mech. Eng.
,
296
, pp.
18
38
.
26.
Newland
,
D. E.
,
1964
, “
Nonlinear Aspects of the Performance of Centrifugal Pendulum Vibration Absorbers
,”
ASME J. Manuf. Sci. Eng.
,
86
(
3
), pp.
257
263
.
27.
Hamdan
,
M.
, and
Burton
,
T.
,
1993
, “
On the Steady State Response and Stability of Non-Linear Oscillators Using Harmonic Balance
,”
J. Sound. Vib.
,
166
(
2
), pp.
255
266
.
28.
Kovacic
,
I.
,
Rand
,
R.
, and
Mohamed Sah
,
S.
,
2018
, “
Mathieu’s Equation and Its Generalizations: Overview of Stability Charts and Their Features
,”
Appl. Mech. Rev.
,
70
(
2
), p.
020802
.
29.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal. Process.
,
88
, pp.
445
461
.
30.
Carroll
,
T. L.
, and
Pecora
,
L. M.
,
1995
,
Nonlinear Dynamics in Circuits
,
World Scientific
,
Singapore
.
31.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C.-H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound. Vib.
,
300
(
3–5
), pp.
522
551
.
32.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Pratt
,
J. R.
,
1998
, “
A Nonlinear Vibration Absorber for Flexible Structures
,”
Nonlinear Dyn.
,
15
(
3
), pp.
259
282
.
33.
Kecik
,
K.
, and
Borowiec
,
M.
,
2013
, “
An Autoparametric Energy Harvester
,”
Eur. Phys. J. Spec. Top.
,
222
(
7
), pp.
1597
1605
.
34.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2020
, “
Broadband and Enhanced Energy Harvesting Using Inerter Pendulum Vibration Absorber
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
, p. V007T07A007.
35.
Marathe Amol
,
C. A.
,
2006
, “
Asymmetric Mathieu Equations
,”
Proc. R. Soc. A
,
462
, pp.
1643
1659
.
You do not currently have access to this content.