Abstract

In this paper, a properly tuned vibration absorber (spring-mass system) is used to induce a point of zero vibration, or node, anywhere along an arbitrarily supported beam for the purpose of suppressing vibration. Other benefits of enforcing a node include the ability to place a sensitive instrument near or at a point where there is little or no vibration and to keep any point along the beam stationary without using a rigid support. The assumed-modes method is used to discretize the equations of motion, which conveniently leads to the beam displacement at the node location in matrix form. Exploiting the Sherman–Morrison inverse formula, one can obtain compact, closed-form expressions for the beam deflection at the node location and the displacement of the absorber mass, explicitly in terms of the absorber parameters, attachment location, excitation frequency, forcing location and the node location. The resulting expressions can then be used to systematically perform a parameter sensitivity analysis and rapid design modifications. The proposed work contributes to the parametric study of Euler–Bernoulli beams by leveraging closed-form sensitivity expressions to rapidly account for inverse problems involving parameter tolerances and perturbations. The method introduced in this paper can also be easily extended to accommodate changes in attachment location and the tolerable deflection of the absorber mass without the need to perform a potentially expensive and time-consuming re-analysis. Numerical examples are presented to illustrate the utility of using the sensitivity expressions in designing an accurate and robust vibration absorber when slight modifications are introduced.

References

1.
Jacquot
,
R. G.
,
1978
, “
Optimal Dynamic Vibration Absorbers for General Beam Systems
,”
J. Sound. Vib.
,
60
(
4
), pp.
535
542
.
2.
Thompson
,
A. G.
,
1981
, “
Optimal Tuning and Damping of a Dynamic Vibration Absorber Applied to a Force Excited and Damped Primary System
,”
J. Sound. Vib.
,
77
(
3
), pp.
403
415
.
3.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
,
1986
, “
Vibration of Damped Plate-Oscillator Systems
,”
J. Eng. Mech.
,
112
(
1
), pp.
14
30
.
4.
Manikanahally
,
D. N.
, and
Crocker
,
M. J.
,
1991
, “
Vibration Absorbers for Hysterically Damped Mass-Loaded Beams
,”
J. Vib. Acoust.
,
113
(
1
), pp.
116
122
.
5.
Nagaya
,
K.
,
Kurusu
,
A.
,
Ikai
,
S.
, and
Shitani
,
Y.
,
1999
, “
Vibration Control of a Structure by Using a Tunable Absorber and An Optimal Vibration Absorber Under Auto-Tuning Control
,”
J. Sound. Vib.
,
228
(
4
), pp.
773
792
.
6.
Dayou
,
J.
, and
Brennan
,
M. J.
,
2002
, “
Global Control of Structural Vibration Using Multiple-Tuned Tunable Vibration Neutralizers
,”
J. Sound. Vib.
,
258
(
2
), pp.
345
357
.
7.
Chiba
,
M.
, and
Sugimoto
,
T.
,
2003
, “
Vibration Characteristics of a Cantilever Plate With Attached Spring-Mass System
,”
J. Sound. Vib.
,
260
(
2
), pp.
237
263
.
8.
Cha
,
P. D.
,
2004
, “
Imposing Nodes At Arbitrary Locations for General Elastic Structures During Harmonic Excitations
,”
J. Sound. Vib.
,
272
(
3–5
), pp.
853
868
.
9.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2004
, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound. Vib.
,
272
(
3–5
), pp.
893
908
.
10.
Cha
,
P. D.
,
2005
, “
Enforcing Nodes At Required Locations in a Harmonically Excited Structure Using Simple Oscillators
,”
J. Sound. Vib.
,
279
(
3–5
), pp.
779
816
.
11.
Foda
,
M. A.
, and
Albassam
,
B. A.
,
2006
, “
Vibration Confinement in a General Beam Structure During Harmonic Excitations
,”
J. Sound. Vib.
,
295
(
3–5
), pp.
491
517
.
12.
Cha
,
P. D.
, and
Zhou
,
X.
,
2006
, “
Imposing Points of Zero Displacements and Zero Slopes Along Any Linear Structure During Harmonic Excitations
,”
J. Sound. Vib.
,
297
(
1–2
), pp.
55
71
.
13.
Wong
,
W. O.
,
Tang
,
S. L.
,
Cheung
,
Y. L.
, and
Cheng
,
L.
,
2007
, “
Design of a Dynamic Vibration Absorber for Vibration Isolation of Beams Under Point or Distributed Loading
,”
J. Sound. Vib.
,
301
(
3–5
), pp.
898
908
.
14.
Brown
,
B.
, and
Singh
,
T.
,
2010
, “
Minimax Design of Vibration Absorbers for Linear Damped Systems
,”
J. Sound. Vib.
,
330
(
11
), pp.
2437
2448
.
15.
Cha
,
P. D.
, and
Rinker
,
J. M.
,
2012
, “
Enforcing Nodes to Suppress Vibration Along a Harmonically Forced Damped Euler-Bernoulli Beam
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051001
.
16.
Cha
,
P. D.
, and
Buyco
,
K.
,
2015
, “
An Efficient Method for Tuning Oscillator Parameters in Order to Impose Nodes on a Linear Structure Excited by Multiple Harmonics
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031018
.
17.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
Am. Inst. Aeronaut. Astronaut. J.
,
6
(
12
), pp.
2426
2429
.
18.
Rodgers
,
L. C.
,
1970
, “
Derivatives of Eigenvalues and Eigenvectors
,”
Am. Inst. Aeronaut. Astronaut. J.
,
8
(
5
), pp.
943
944
.
19.
Rudisill
,
C. S.
, and
Chu
,
Y. Y.
,
1975
, “
Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors
,”
Am. Inst. Aeronaut. Astronaut. J.
,
13
(
6
), pp.
834
837
.
20.
Adelman
,
H. M.
, and
Haftka
,
R. T.
,
1986
, “
Sensitivity Analysis for Discrete Structural Systems
,”
Am. Inst. Aeronaut. Astronaut. J.
,
24
(
5
), pp.
823
832
.
21.
Murthy
,
D. V.
, and
Haftka
,
R. T.
,
1988
, “
Derivatives of Eigenvalues and Eigenvectors of a General Complex Matrix
,”
Int. J. Numer. Methods Eng.
,
26
(
2
), pp.
293
311
.
22.
Wang
,
B. P.
,
1993
, “
Eigenvalue Sensitivity with Respect to Location of Internal Stiffness and Mass Attachments
,”
Am. Inst. Aeronaut. Astronaut. J.
,
31
(
4
), pp.
791
794
.
23.
Lee
,
I. W.
, and
Jung
,
G. H.
,
1997
, “
An Efficient Algebraic Method for Computation of Natural Frequency and Mode Shape Sensitivities: Part I, Distinct Natural Frequencies
,”
Comput. Struct.
,
62
(
3
), pp.
429
435
.
24.
Gürgöze
,
M.
,
1998
, “
On the Sensitivities of the Eigenvalues of a Viscously Damped Cantilever Carrying a Tip Mass
,”
J. Sound. Vib.
,
216
(
2
), pp.
215
225
.
25.
1999
, “
Rates of Change of Eigenvalues and Eigenvectors in Damped Dynamics System
,”
Am. Inst. Aeronaut. Astronaut. J.
,
37
(
11
), pp.
1452
1458
.
26.
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2001
, “
Eigen Derivative Analysis of Asymmetric Non-conservative Systems
,”
Int. J. Numer. Methods Eng.
,
51
(
6
), pp.
709
733
.
27.
Choi
,
K. M.
,
Jo
,
H. K.
,
Kim
,
W. H.
, and
Lee
,
I. W.
,
2004
, “
Sensitivity Analysis of Non-Conservative Eigensystems
,”
J. Sound. Vib.
,
274
(
3–5
), pp.
997
1011
.
28.
Wang
,
B. P.
, and
Apte
,
A. P.
,
2006
, “
Complex Variable Method for Eigensolution Sensitivity Analysis
,”
Am. Inst. Aeronaut. Astronaut. J.
,
44
(
12
), pp.
2958
2961
.
29.
Guedrai
,
N.
,
Smaoui
,
H.
, and
Chouchane
,
M.
,
2006
, “
A Direct Algebraic Method for Eigensolution Sensitivity Computation of Damped Asymmetric Systems
,”
Int. J. Numer. Methods Eng.
,
68
(
6
), pp.
674
689
.
30.
Mirzaeifar
,
R.
,
Bahai
,
H.
, and
Shahab
,
S.
,
2008
, “
A New Method for Finding the First- and Second-Order Eigenderivatives of Asymmetric Non-Conservative Systems with Application to An FGM Plate Actively Controlled by Piezoelectric Sensor/Actuators
,”
Int. J. Numer. Methods Eng.
,
75
(
12
), pp.
1492
1510
.
31.
Cha
,
P. D.
, and
Sabater
,
A. B.
,
2011
, “
Eigenvalue Sensitivities of a Linear Structure Carrying Lumped Attachments
,”
Am. Inst. Aeronaut. Astronaut. J.
,
49
(
11
), pp.
2470
2481
.
32.
Cha
,
P. D.
,
Carbon
,
K. C.
, and
Hsieh
,
R.
,
2014
, “
Eigenvalues and Eigenvalue Sensitivities of a Beam Supported by Viscoelastic Solids
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021017
.
33.
Porter
,
J. H.
, and
Harvey
,
P. S.
,
2019
, “
Imposing a Node At a Desired Location Along a Beam Under Harmonic Base Excitation: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061003
.
34.
Sherman
,
B.
, and
Morrison
,
W.
,
1950
, “
Adjustment of An Inverse Matrix Corresponding to a Change in One Element of a Given Matrix
,”
Ann. Math. Stat.
,
21
(
1
), pp.
124
127
.
35.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
36.
Gonçalves
,
P.
,
Brennan
,
M.
, and
Elliott
,
S.
,
2007
, “
Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler–Bernoulli Beams
,”
J. Sound. Vib.
,
301
(
3–5
), pp.
1035
1039
.
37.
Shen
,
Y.
,
Zhou
,
X.
, and
Cha
,
P. D.
,
2018
, “
An Efficient Method to Quench Excess Vibration for a Harmonically Excited Damped Plate
,”
Int. J. Mech. Sci.
,
141
, pp.
372
385
.
38.
Shen
,
Y.
,
Cha
,
P. D.
, and
Zhou
,
X.
,
2019
, “
Quenching Vibration by Imposing Nodes on a Plate Subjected to Multiple Harmonics With Distinct Excitation Frequencies
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061005
.
39.
Chen
,
J.
,
Cha
,
P. D.
,
Shen
,
Y.
, and
Zhou
,
X.
,
2022
, “
Quenching Vibration on a Harmonically Excited Symmetric Laminated Composite Plate
,”
ASME J. Vib. Acoust.
,
144
(
3
), p. 031004.
You do not currently have access to this content.