Abstract

A previously proposed planar axisymmetric dynamic vibration absorber (DVA), with embedded acoustic black hole (ABH) features, has been shown to suffer from the very selective coupling with the host structure, thus compromising its vibration reduction performance. To tackle the problem, an eccentric ABH-based circular DVA whose thickness profile is tailored according to a circumferential gradient variation is proposed. This new configuration preserves the ABH profile in the radial direction and breaks the axisymmetric of the original DVA design at the same time. While the former permits the ABH features to fully play out in a continuous manner, the later entails a more effective coupling with the host structure. These salient properties have been demonstrated and confirmed both numerically and experimentally by examining a benchmark plate structure. For analyses, a coupling model embracing the host structure and the add-on DVAs is established which allows the calculation of the coupling coefficient, a vital quantity to guide the DVA design. Studies demonstrate the advantages of the proposed DVA over existing designs for the same given mass. The enriched structural coupling and the enhanced modal damping, arising from the eccentric and circumferentially graded ABH design, are shown to be the origin of such improvement. All in all, the physical process underpinning the dynamic absorber principle and waveguide absorber from the host structures is simultaneously consolidated, thus leading to superior broadband structural vibration suppression.

References

1.
Hill
,
S. G.
, and
Snyder
,
S. D.
,
2002
, “
Design of an Adaptive Vibration Absorber to Reduce Electrical Transformer Structural Vibration
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
606
611
.
2.
Lv
,
H.
, and
Leamy
,
M. J.
,
2021
, “
Damping Frame Vibrations Using Anechoic Stubs: Analysis Using an Exact Wave-Based Approach
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051012
.
3.
Krylov
,
V. V.
, and
Tilman
,
F. J. B. S.
,
2004
, “
Acoustic ‘Black Holes’ for FlexuralWaves as Effective Vibration Dampers
,”
J. Sound Vib.
,
274
(
3–5
), pp.
605
619
.
4.
Krylov
,
V. V.
,
2004
, “
New Type of Vibration Dampers Utilising the Effect of Acoustic ‘Black Holes’
,”
Acta Acust. Acust.
,
90
(
5
), pp.
830
837
.
5.
Georgiev
,
V. B.
,
Cuenca
,
J.
,
Gautier
,
F.
,
Simon
,
L.
, and
Krylov
,
V. V.
,
2011
, “
Damping of Structural Vibrations in Beams and Elliptical Plates Using the Acoustic Black Hole Effect
,”
J. Sound Vib.
,
330
(
11
), pp.
2497
2508
.
6.
Cheer
,
J.
,
Hook
,
K.
, and
Daley
,
S.
,
2021
, “
Active Feedforward Control of Flexural Waves in an Acoustic Black Hole Terminated Beam
,”
Smart Mater. Struct.
,
30
(
3
), p.
035003
.
7.
Huang
,
W.
,
Ji
,
H.
,
Qiu
,
J.
, and
Cheng
,
L.
,
2016
, “
Wave Energy Focalization in a Plate With Imperfect Two-Dimensional Acoustic Black Hole Indentation
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061004
.
8.
Leng
,
J.
,
Romero-García
,
V.
,
Pelat
,
A.
,
Picó
,
R.
,
Groby
,
J.-P.
, and
Gautier
,
F.
,
2020
, “
Interpretation of the Acoustic Black Hole Effect Based on the Concept of Critical Coupling
,”
J. Sound Vib.
,
471
, p.
115199
.
9.
Krylov
,
V. V.
, and
Winward
,
R. E. T. B.
,
2007
, “
Experimental Investigation of the Acoustic Black Hole Effect for Flexural Waves in Tapered Plates
,”
J. Sound Vib.
,
300
(
1–2
), pp.
43
49
.
10.
Kralovic
,
V.
, and
Krylov
,
V. V.
,
2007
, “
Damping of Flexural Vibrations in Tapered Rods of Power-Law Profile: Experimental Studies
,”
Proc. Inst. Acoust.
,
29
(
5
), pp.
66
73
.
11.
Bowyer
,
E. P.
,
O’Boy
,
D. J.
,
Krylov
,
V. V.
, and
Gautier
,
F.
,
2013
, “
Experimental Investigation of Damping Flexural Vibrations in Plates Containing Tapered Indentations of Power-Law Profile
,”
Applied Acoustics
,
74
(
4
), pp.
553
560
.
12.
Feurtado
,
P. A.
, and
Conlon
,
S. C.
,
2016
, “
An Experimental Investigation of Acoustic Black Hole Dynamics at Low, Mid, and High Frequencies
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061002
.
13.
Tang
,
L.
,
Cheng
,
L.
,
Ji
,
H.
, and
Qiu
,
J.
,
2016
, “
Characterization of Acoustic Black Hole Effect Using a One-Dimensional Fully-Coupled and Wavelet-Decomposed Semi-Analytical Model
,”
J. Sound Vib.
,
374
, pp.
172
184
.
14.
Bayod
,
J. J.
,
2011
, “
Experimental Study of Vibration Damping in a Modified Elastic Wedge of Power-Law Profile
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061003
.
15.
Conlon
,
S. C.
,
Fahnline
,
J. B.
, and
Semperlotti
,
F.
,
2015
, “
Numerical Analysis of the Vibroacoustic Properties of Plates with Embedded Grids of Acoustic Black Holes
,”
J. Acoust. Soc. Am.
,
137
(
1
), pp.
447
457
.
16.
Gao
,
N.
,
Wei
,
Z.
,
Hou
,
H.
, and
Krushynska
,
A. O.
,
2019
, “
Design and Experimental Investigation of V-Folded Beams with Acoustic Black Hole Indentations
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
EL79
EL83
.
17.
Deng
,
J.
,
Zheng
,
L.
,
Zeng
,
P.
,
Zuo
,
Y.
, and
Guasch
,
O.
,
2019
, “
Passive Constrained Viscoelastic Layers to Improve the Efficiency of Truncated Acoustic Black Holes in Beams
,”
Mech. Syst. Signal Process
,
118
, pp.
461
476
.
18.
Shepherd
,
M. R.
,
McCormick
,
C. A.
,
Conlon
,
S. C.
, and
Feurtado
,
P. A.
,
2017
, “
Modeling and Optimization of Acoustic Black Hole Vibration Absorbers
,”
J. Acoust. Soc. Am.
,
141
(
5
), pp.
4034
4034
.
19.
McCormick
,
C. A.
, and
Shepherd
,
M. R.
,
2020
, “
Design Optimization and Performance Comparison of Three Styles of One-Dimensional Acoustic Black Hole Vibration Absorbers
,”
J. Sound Vib.
,
470
, p.
115164
.
20.
Ma
,
L.
,
Dong
,
H.-W.
, and
Cheng
,
L.
,
2020
, “
An Alternative and Optimized Thickness Profile of an Acoustic Black Hole Plate
,”
J. Sound Vib.
,
486
, p.
115619
.
21.
Bowyer
,
E. P.
, and
Krylov
,
V. V.
,
2014
, “
Experimental Investigation of Damping Flexural Vibrations in Glass Fibre Composite Plates Containing One- and Two-Dimensional Acoustic Black Holes
,”
Compos. Struct.
,
107
, pp.
406
415
.
22.
Bowyer
,
E. P.
, and
Krylov
,
V. V.
,
2015
, “
Experimental Study of Sound Radiation by Plates Containing Circular Indentations of Power-Law Profile
,”
Appl. Acoust.
,
88
, pp.
30
37
.
23.
Bowyer
,
E. P.
, and
Krylov
,
V. V.
,
2015
, “
A Review of Experimental Investigations Into the Acoustic Black Hole Effect and Its Applications for Reduction of Flexural Vibrations and Structure-Borne Sound
,”
Inter-Noise
,
San Francisco
,
Aug. 9–12
. https://www.researchgate.net/publication/282186765
24.
Zhao
,
L.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2014
, “
Broadband Energy Harvesting Using Acoustic Black Hole Structural Tailoring
,”
Smart Mater. Struct.
,
23
(
6
), p.
065021
.
25.
Zhao
,
L.
,
2016
, “
Passive Vibration Control Based on Embedded Acoustic Black Holes
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041002
.
26.
Pelat
,
A.
,
Gautier
,
F.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2020
, “
The Acoustic Black Hole: A Review of Theory and Applications
,”
J. Sound Vib.
,
476
, p.
115316
.
27.
Zhao
,
C.
, and
Prasad
,
M. G.
,
2019
, “
Acoustic Black Holes in Structural Design for Vibration and Noise Control
,”
Acoustics
,
1
(
1
), pp.
220
251
.
28.
Frahm
,
H.
,
1909
, “Device for Damping Vibrations of Bodies,” U. S. Patent No. 989958.
29.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
(
7
), pp.
9
22
.
30.
Asami
,
T.
, and
Nishihara
,
O.
,
1999
, “
Analytical and Experimental Evaluation of an Air Damped Dynamic Vibration Absorber: Design Optimizations of the Three-Element Type Model
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
334
342
.
31.
Asami
,
T.
, and
Nishihara
,
O.
,
2002
, “
H2 Optimization of the Three-Element Type Dynamic Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
583
592
.
32.
Ren
,
M. Z.
,
2001
, “
A Variant Design of the Dynamic Vibration Absorber
,”
J. Sound Vib.
,
245
(
4
), pp.
762
770
.
33.
Ozer
,
M.
, and
Royston
,
T.
,
2005
, “
Extending Den Hartog’s Vibration Absorber Technique to Multi-Degree-of-Freedom Systems
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
341
350
.
34.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2004
, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
,
272
(
3
), pp.
893
908
.
35.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2006
, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
56
65
.
36.
Jacquot
,
R. G.
, and
Foster
,
J. E.
,
1977
, “
Optimal Cantilever Dynamic Vibration Absorbers
,”
J. Ind. Eng. Int.
,
99
(
1
), pp.
138
141
.
37.
Snowdon
,
J. C.
,
Wolfe
,
A. A.
, and
Kerlin
,
R. L.
,
1984
, “
The Cruciform Dynamic Vibration Absorber
,”
J. Acoust. Soc. Am.
,
75
(
6
), pp.
1792
1799
.
38.
Zuo
,
L.
, and
Nayfeh
,
S.
,
2005
, “
Optimization of the Individual Stiffness and Damping Parameters in Multiple-Tuned-Mass-Damper Systems
,”
ASME J. Vib. Acoust.
,
127
(
1
), pp.
77
83
.
39.
Giaralis
,
A.
, and
Taflanidis
,
A. A.
,
2018
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design for Seismically Excited MDOF Structures with Model Uncertainties Based on Reliability Criteria
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2082
.
40.
Zhou
,
T.
, and
Cheng
,
L.
,
2018
, “
A Resonant Beam Damper Tailored with Acoustic Black Hole Features for Broadband Vibration Reduction
,”
J. Sound Vib.
,
430
, pp.
174
184
.
41.
Ji
,
H.
,
Wang
,
N.
,
Zhang
,
C.
,
Wang
,
X.
,
Cheng
,
L.
, and
Qiu
,
J.
,
2021
, “
A Vibration Absorber Based on Two-Dimensional Acoustic Black Holes
,”
J. Sound Vib.
,
500
, p.
116024
.
42.
Zhou
,
T.
, and
Cheng
,
L.
,
2022
, “
Planar Swirl-Shaped Acoustic Black Hole Absorbers for Multi-Directional Vibration Suppression
,”
J. Sound Vib.
,
516
, p.
116500
.
43.
Wijker
,
J.
,
2008
,
Spacecraft Structures
,
Springer-Verlag
,
Heidelberg/Berlin, Germany
.
You do not currently have access to this content.