Abstract

This article proposes an active modal vibration control method based on a modal sliding mode controller applied to a smart material composite structure with integrated piezoelectric transducers as actuators and sensors. First, the electromechanical coupled system is identified using a modal reduced-order model. The sliding surface is based on the modal-filtered states and designed using a general formulation allowing the control of multiple vibration modes with multiple piezoelectric sensors and actuators. The performance and stability of the nonlinear controller are addressed and confirmed with the experimental results on a composite smart spoiler-shaped structure. The nonlinear switching control signal based on the modal-shaped sliding surface improves performances of the linear part of the control while maintaining not only stability but also robustness. The attenuation level achieved on the target modes on all piezoelectric sensors starts from −14 dB up to −22 dB, illustrating the strong potential of nonlinear switching control methods in active vibration control.

References

1.
Tuloup
,
C.
,
Harizi
,
W.
,
Aboura
,
Z.
,
Meyer
,
Y.
,
Khellil
,
K.
, and
Lachat
,
R.
,
2019
, “
On the Use of In-Situ Piezoelectric Sensors for the Manufacturing and Structural Health Monitoring of Polymer-Matrix Composites: A Literature Review
,”
Compos. Struct.
,
215
, pp.
127
149
.
2.
Shivashankar
,
P.
, and
Gopalakrishnan
,
S.
,
2020
, “
Review on the Use of Piezoelectric Materials for Active Vibration, Noise, and Flow Control
,”
Smart Mater. Struct.
,
29
(
5
), p.
053001
.
3.
Safaei
,
M.
,
Sodano
,
H. A.
, and
Anton
,
S. R.
,
2019
, “
A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008–2018)
,”
Smart Mater. Struct.
,
28
(
11
), p.
113001
.
4.
Chomette
,
B.
,
Remond
,
D.
,
Chesne
,
S.
, and
Gaudiller
,
L.
,
2008
, “
Semi-Adaptive Modal Control of On-Board Electronic Boards Using an Identification Method
,”
Smart Mater. Struct.
,
17
(
6
), p.
065019
.
5.
Preumont
,
A.
,
2018
,
Vibration Control of Active Structures: An Introduction
, Vol.
246
,
Springer, Berlin, Germany
.
6.
Zhang
,
W.
,
Qiu
,
J.
, and
Tani
,
J.
,
2004
, “
Robust Vibration Control of a Plate Using Self-Sensing Actuators of Piezoelectric Patches
,”
J. Intell. Mater. Syst. Struct.
,
15
(
12
), pp.
923
931
.
7.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
, Vol.
10
,
Springer
,
New York
.
8.
Sung
,
K. G.
,
Han
,
Y. M.
,
Cho
,
J. W.
, and
Choi
,
S. B.
,
2008
, “
Vibration Control of Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller
,”
J. Sound. Vib.
,
311
(
3–5
), pp.
1004
1019
.
9.
Ning
,
D.
,
Sun
,
S.
,
Wei
,
L.
,
Zhang
,
B.
,
Du
,
H.
, and
Li
,
W.
,
2017
, “
Vibration Reduction of Seat Suspension Using Observer Based Terminal Sliding Mode Control With Acceleration Data Fusion
,”
Mechatronics
,
44
, pp.
71
83
.
10.
Mien
,
V.
,
Tu
,
P. H. T.
,
Nguyen
,
N. P.
, and
Choi
,
S. B.
,
2020
, “
A New Optimal Sliding Mode Controller With Adjustable Gains Based on Bolza-Meyer Criterion for Vibration Control
,”
J. Sound. Vib.
,
485
, p.
115542
.
11.
Nguyen
,
S. D.
,
Lam
,
B. D.
, and
Choi
,
S. B.
,
2021
, “
Smart Dampers-Based Vibration Control–Part 2: Fractional-Order Sliding Control for Vehicle Suspension System
,”
Mech. Syst. Signal. Process.
,
148
, p.
107145
.
12.
Hu
,
Q.
, and
Friswell
,
M. I.
,
2008
, “
Adaptive Sliding Mode Attitude and Vibration Control of Flexible Spacecraft Under Unknown Disturbance and Uncertainty
,”
IFAC Proceedings Volumes
, Seoul, Korea, July 6–11,
41
(
2
), pp.
9871
9876
.
13.
Concha
,
A.
,
Thenozhi
,
S.
,
Betancourt
,
R. J.
, and
Gadi
,
S. K.
,
2021
, “
A Tuning Algorithm for a Sliding Mode Controller of Buildings With ATMD
,”
Mech. Syst. Signal. Process.
,
154
, p.
107539
.
14.
Qiu
,
Z. C.
,
Zhang
,
X. M.
,
Wang
,
Y. C.
, and
Wu
,
Z. W.
,
2009
, “
Active Vibration Control of a Flexible Beam Using a Non-Collocated Acceleration Sensor and Piezoelectric Patch Actuator
,”
J. Sound. Vib.
,
326
(
3–5
), pp.
438
455
.
15.
Zhang
,
Q.
,
Li
,
C.
,
Zhang
,
J.
, and
Zhang
,
J.
,
2017
, “
Smooth Adaptive Sliding Mode Vibration Control of a Flexible Parallel Manipulator With Multiple Smart Linkages in Modal Space
,”
J. Sound. Vib.
,
411
, pp.
1
19
.
16.
Oveisi
,
A.
, and
Nestorović
,
T.
,
2016
, “
Robust Observer-Based Adaptive Fuzzy Sliding Mode Controller
,”
Mech. Syst. Signal. Process.
,
76
, pp.
58
71
.
17.
Wang
,
R. L.
,
Gu
,
H.
, and
Song
,
G.
,
2014
, “
Adaptive Robust Sliding Mode Vibration Control of a Flexible Beam Using Piezoceramic Sensor and Actuator: An Experimental Study
,”
Mathematical Problems in Engineering
.
18.
Fang
,
Y.
,
Fei
,
J.
, and
Hu
,
T.
,
2018
, “
Adaptive Backstepping Fuzzy Sliding Mode Vibration Control of Flexible Structure
,”
J. Low Frequency Noise, Vibration Active Control
,
37
(
4
), pp.
1079
1096
.
19.
Rahmani
,
B.
,
2018
, “
Adaptive Fuzzy Sliding Mode Control for Vibration Suppression of a Rotating Carbon Nanotube-Reinforced Composite Beam
,”
J. Vib. Control
,
24
(
12
), pp.
2447
2463
.
20.
Hu
,
J.
, and
Zhu
,
D.
,
2012
, “
Vibration Control of Smart Structure Using Sliding Mode Control With Observer
,”
J. Comput.
,
7
(
2
), pp.
411
418
.
21.
Duc
,
G.
, and
Mammar
,
S.
,
1992
, “
Frequency-Shaped LQG/LTR Design: Application to the Robust Stabilization of an Helicopter
,”
IFAC Symposium
,
Zurich, Switzerland
,
Sept. 4–6, 1991
.
22.
David Young
,
K.
, and
Özgüner
,
Ü.
,
1993
, “
Frequency Shaping Compensator Design for Sliding Mode
,”
Int. J. Control.
,
57
(
5
), pp.
1005
1019
.
23.
Nonami
,
K.
,
Nishimura
,
H.
, and
Tian
,
H.
,
1996
, “
H∞/μ Control-Based Frequency-Shaped Sliding Mode Control for Flexible Structures
,”
JSME Int. J. Ser. C, Dyn., Control, Robotics, Design Manuf.
,
39
(
3
), pp.
493
501
.
24.
Yanada
,
H.
, and
Ohnishi
,
H.
,
1999
, “
Frequency-Shaped Sliding Mode Control of an Electrohydraulic Servo-Motor
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
213
(
6
), pp.
441
448
.
25.
Acarman
,
T.
, and
Özgüner
,
Ü
,
2002
, “
Frequency Shaping Compensation for Backstepping Sliding Mode Control
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
37
42
, 15th Triennial World Congress, Barcelona, Spain.
26.
Royel
,
S.
,
Ha
,
Q. P.
, and
Aguilera
,
R. P.
,
2018
, “
Frequency-Shaped Second-Order Sliding Mode Control for Smart Suspension Systems
,
2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)
, Singapore, Nov. 18–21, pp.
907
912
.
27.
Zuo
,
L.
, and
Slotine
,
J. J. E.
,
2005
, “
Robust Vibration Isolation via Frequency-Shaped Sliding Control and Modal Decomposition
,”
J. Sound. Vib.
,
285
(
4–5
), pp.
1123
1149
.
28.
Young
,
P.
, and
Jakeman
,
A.
,
1980
, “
Refined Instrumental Variable Methods of Recursive Time-Series Analysis Part III
,”
Extensions. Int. J. Control
,
31
(
4
), pp.
741
764
.
29.
Garnier
,
H.
,
Mensler
,
M.
, and
Richard
,
A.
,
2003
, “
Continuous-Time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation
,”
Int. J. Control.
,
76
(
13
), pp.
1337
1357
.
30.
Chesné
,
S.
,
Jean-Mistral
,
C.
, and
Gaudiller
,
L.
,
2013
, “
Experimental Identification of Smart Material Coupling Effects in Composite Structures
,”
Smart Mater. Struct.
,
22
(
7
), p.
075007
.
31.
Laub
,
A.
,
Heath
,
M.
,
Paige
,
C.
, and
Ward
,
R.
,
1987
, “
Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms
,”
IEEE. Trans. Automat. Contr.
,
32
(
2
), pp.
115
122
.
32.
Liao
,
X.
, and
Yu
,
P.
,
2008
,
Absolute Stability of Nonlinear Control Systems
, Vol.
25
,
Springer Science & Business Media
,
Berlin, Germany
.
You do not currently have access to this content.