Abstract

A local-domain wave packet enriched multiphysics finite element (FE) formulation is employed for accurately solving axisymmetric wave propagation problems in elastic and piezoelastic media, involving complex wave modes and sharp jumps at the wavefronts, which pose challenges to the conventional FE solutions. The conventional Lagrangian interpolations for the displacement and electric potential fields are enriched with the element-domain sinusoidal functions that satisfy the partition of unity condition. The extended Hamilton’s principle is employed to derive the coupled system of equations of motion which is solved using the simple Newmark-β direct time integration scheme without resorting to any remeshing near the wavefronts or post-processing. The performance of the enrichment is assessed for the axisymmetric problems of impact waves in elastic and piezoelectric cylinders and elastic half-space, bulk and Rayleigh waves in the semi-infinite elastic domain and ultrasonic Lamb wave actuation and propagation in plate-piezoelectric transducer system. The element shows significant improvement in the computational efficiency and accuracy over the conventional FE for all problems, including those involving multiple complex wave modes and sharp discontinuities in the fields at the wavefronts.

References

1.
Stronge
,
W. J.
,
2018
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
148
176
.
2.
Wang
,
J.-J.
,
Chang
,
T.-P.
,
Chen
,
B.-T.
, and
Wang
,
H.
,
2012
, “
Determination of Poisson’s Ratio of Solid Circular Rods by Impact-Echo Method
,”
J. Sound Vib.
,
331
(
5
), pp.
1059
1067
.
3.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
114
.
4.
Agrahari
,
J. K.
, and
Kapuria
,
S.
,
2017
, “
Active Detection of Block Mass and Notch-Type Damages in Metallic Plates Using a Refined Time-Reversed Lamb Wave Technique
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2064
.
5.
Chillara
,
V. K.
,
Greenhall
,
J.
, and
Pantea
,
C.
,
2020
, “
Ultrasonic Waves From Radial Mode Excitation of a Piezoelectric Disc on the Surface of An Elastic Solid
,”
Smart Mater. Struct.
,
29
(
8
), p.
085002
.
6.
Semblat
,
J. F.
, and
Brioist
,
J. J.
,
2000
, “
Efficiency of Higher Order Finite Elements for the Analysis of Seismic Wave Propagation
,”
J. Sound Vib.
,
231
(
2
), pp.
460
467
.
7.
Riaud
,
A.
,
Thomas
,
J.-L.
,
Charron
,
E.
,
Bussonnière
,
A.
,
Matar
,
O. B.
, and
Baudoin
,
M.
,
2015
, “
Anisotropic Swirling Surface Acoustic Waves From Inverse Filtering for On-Chip Generation of Acoustic Vortices
,”
Phys. Rev. Appl.
,
4
(
3
), p.
034004
.
8.
Tian
,
Z.
,
Yang
,
S.
,
Huang
,
P.-H.
,
Wang
,
Z.
,
Zhang
,
P.
,
Gu
,
Y.
,
Bachman
,
H.
,
Chen
,
C.
,
Wu
,
M.
,
Xie
,
Y.
, and
Huang
,
T. J.
,
2019
, “
Wave Number-Spiral Acoustic Tweezers for Dynamic and Reconfigurable Manipulation of Particles and Cells
,”
Sci. Adv.
,
5
(
5
), p.
eaau6062
.
9.
Wang
,
J.
,
Wang
,
S.
,
Xie
,
L.
,
Zhang
,
Y.
,
Yuan
,
L.
,
Du
,
J.
, and
Zhang
,
H.
,
2020
, “
The Axisymmetric Rayleigh Waves in a Semi-Infinite Elastic Solid
,”
Theor. Appl. Mech. Lett.
,
10
(
2
), pp.
120
124
.
10.
Ambardar
,
A.
, and
Ferris
,
C. D.
,
1978
, “
Wave Propagation in a Piezoelectric Two-Layered Cylindrical Shell With Hexagonal Symmetry: Some Implications for Long Bone
,”
J. Acoust. Soc. Am.
,
63
(
3
), pp.
781
792
.
11.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
,
Dover Publications
,
New York
.
12.
Pochhammer
,
L.
,
1876
, “
Ueber die Fortpflanzungsgeschwindigkeiten Kleiner Schwingungen in Einem Unbegrenzten Isotropen Kreiscylinder
,”
J. Reine Angew. Math.
,
81
, pp.
324
336
.
13.
Chree
,
C.
,
1886
, “
Longitudinal Vibrations of a Circular Bar
,”
Q. J. Pure Appl. Math.
,
21
, pp.
287
98
.
14.
Achenbach
,
J. D.
,
1973
,
Wave Propagation in Elastic Solids
,
North-Holland Pub. Co.
,
Amsterdam
.
15.
Skalak
,
R.
,
1957
, “
Longitudinal Impact of a Semi-Infinite Circular Elastic Bar
,”
J. Appl. Mech.
,
24
(
1957
), pp.
59
64
.
16.
Vales
,
F.
,
Moravka
,
S.
,
Brepta
,
R.
, and
Cerv
,
J.
,
1996
, “
Wave Propagation in a Thick Cylindrical Bar Due to Longitudinal Impact
,”
JSME Int. J. Ser. A: Mech. Mater. Eng.
,
39
(
1
), pp.
60
70
.
17.
Cerv
,
J.
,
Adamek
,
V.
,
Vales
,
F.
,
Gabriel
,
D.
, and
Plesek
,
J.
,
2016
, “
Wave Motion in a Thick Cylindrical Rod Undergoing Longitudinal Impact
,”
Wave Motion
,
66
, pp.
88
105
.
18.
Laturelle
,
F.
,
1990
, “
The Stresses Produced in An Elastic Half-space by a Normal Step Loading Over a Circular Area Analytical and Numerical Results
,”
Wave Motion
,
12
(
2
), pp.
107
127
.
19.
Miklowitz
,
J.
,
1957
, “
The Propagation of Compressional Waves in a Dispersive Elastic Rod, Part 1 - Results From the Theory
,”
ASME J. Appl. Mech.
,
24
(
2
), pp.
231
239
.
20.
De
,
A.
, and
Roy
,
A.
,
2012
, “
Transient Response of An Elastic Half Space to Normal Pressure Acting Over a Circular Area on An Inclined Plane
,”
J. Eng. Math.
,
74
(
1
), pp.
119
141
.
21.
Kubenko
,
V. D.
,
2016
, “
Non-Stationary Stress State of An Elastic Layer At the Mixed Boundary Conditions
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
96
(
12
), pp.
1442
1456
.
22.
Deraemaeker
,
A.
,
Babuska
,
I.
, and
Bouilard
,
P.
,
1999
, “
Dispersion and Pollution of the FEM Solution for the Helmholtz Equation in One, Two and Three Dimensions
,”
Int. J. Numer. Methods Eng.
,
46
(
4
), pp.
471
499
.
23.
Guddati
,
M.
, and
Yue
,
B.
,
2004
, “
Modified Integration Rules for Reducing Dispersion Error in Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
3
), pp.
275
287
.
24.
Datta
,
S. K.
,
Shah
,
A. H.
,
Bratton
,
R. L.
, and
Chakraborty
,
T.
,
1987
, “
Wave Propagation in Laminated Composite Plates
,” Technical Report, Defense Technical Information Center.
25.
Kalkowski
,
M. K.
,
Muggleton
,
J. M.
, and
Rustighi
,
E.
,
2018
, “
Axisymmetric Semi-Analytical Finite Elements for Modelling Waves in Buried/Submerged Fluid-Filled Waveguides
,”
Comput. Struct.
,
196
(
1
), pp.
327
340
.
26.
Doyle
,
J. F.
,
1988
, “
A Spectrally Formulated Finite Element for Longitudinal Wave Propagation
,”
Int. J. Anal. Exp. Modal Anal.
,
3
, pp.
1
5
.
27.
Nanda
,
N.
, and
Kapuria
,
S.
,
2015
, “
Spectral Finite Element for Wave Propagation in Curved Beams
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041005
.
28.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.
29.
Kacimi
,
A. E.
, and
Laghrouche
,
O.
,
2010
, “
Improvement of PUFEM for the Numerical Solution of High-Frequency Elastic Wave Scattering on Unstructured Triangular Mesh Grids
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
330
350
.
30.
Kudela
,
P.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2007
, “
Wave Propagation Modelling in 1D Structures Using Spectral Finite Elements
,”
J. Sound Vib.
,
300
(
1–2
), pp.
88
100
.
31.
Xu
,
C.
, and
Yu
,
Z.
,
2017
, “
Numerical Simulation of Elastic Wave Propagation in Functionally Graded Cylinders Using Time-Domain Spectral Finite Element Method
,”
Adv. Mech. Eng.
,
9
(
11
), pp.
1
17
.
32.
Ham
,
S.
, and
Bathe
,
K.-J.
,
2012
, “
A Finite Element Method Enriched for Wave Propagation Problems
,”
Comput. Struct.
,
94–95
, pp.
1
12
.
33.
Idesman
,
A.
,
Subramanian
,
K.
,
Schmidt
,
M.
,
Foley
,
J.
,
Tu
,
Y.
, and
Sierakowski
,
R.
,
2010
, “
Finite Element Simulation of Wave Propagation in an Axisymmetric Bar
,”
J. Sound Vib.
,
329
(
14
), pp.
2851
2872
.
34.
Idesman
,
A. V.
, and
Mates
,
S. P.
,
2014
, “
Accurate Finite Element Simulation and Experimental Study of Elastic Wave Propagation in a Long Cylinder Under Impact Loading
,”
Int. J. Impact Eng.
,
71
(
3
), pp.
1
16
.
35.
Lin
,
X.
, and
Ballmann
,
J.
,
1995
, “
A Numerical Scheme for Axisymmetric Elastic Waves in Solids
,”
Wave Motion
,
21
(
2
), pp.
115
126
.
36.
Kumar
,
A.
, and
Kapuria
,
S.
,
2018
, “
An Enriched Finite Element Method for General Wave Propagation Problems Using Local Element Domain Harmonic Enrichment Functions
,”
Arch. Appl. Mech.
,
88
(
9
), pp.
1573
1594
.
37.
Kumar
,
A.
, and
Kapuria
,
S.
,
2018
, “
Wave Packet Enriched Finite Element for Generalized Thermoelasticity Theories for Thermal Shock Wave Problems
,”
J. Therm. Stress.
,
41
(
8
), pp.
1080
1099
.
38.
Kapuria
,
S.
, and
Kumar
,
A.
,
2020
, “
A Wave Packet Enriched Finite Element for Electroelastic Wave Propagation Problems
,”
Int. J. Mech. Sci.
,
170
(
10
), p.
105081
.
39.
Kapuria
,
S.
, and
Kumar
,
A.
,
2020
, “
Thermoelectroelastic Shock Waves in Piezoelastic Media: An Enriched Finite Element Solution Based on Generalized Piezothermoelasticity
,”
Mech. Adv. Mater. Struc.
, Published online, pp.
1
13
.
40.
Tianhu
,
H.
,
Xiaogeng
,
T.
, and
Yapeng
,
S.
,
2002
, “
Two-Dimensional Generalized Thermal Shock Problem of a Thick Piezoelectric Plate of Infinite Extent
,”
Int. J. Eng. Sci.
,
40
(
20
), pp.
2249
2264
.
41.
Petyt
,
M.
,
2010
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
,
Cambridge, UK
.
42.
Yu
,
J.
,
Zhang
,
C.
, and
Lefebvre
,
J.-E.
,
2015
, “
Guided Wave Characteristics in Functionally Graded Piezoelectric Rings With Rectangular Cross-sections
,”
Acta Mech.
,
226
(
3
), pp.
597
609
.
43.
Agrahari
,
J. K.
, and
Kapuria
,
S.
,
2016
, “
A refined Lamb Wave Time-Reversal Method With Enhanced Sensitivity for Damage Detection in Isotropic Plates
,”
J. Intell. Mater. Syst. Struct.
,
27
(
10
), pp.
1283
1305
.
You do not currently have access to this content.