Abstract

Vibration energy harvesting problems have strongly developed in recent years. However, many researchers just consider bending vibration models of energy harvesters. As a matter of fact, torsional vibration is also important and cannot be ignored in many cases. In this work, closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester subjected to a fluid vortex are derived. Timoshenko beam model is used for modeling the energy harvester, and the extended Hamilton’s principle is used in the modeling process. Since piezoelectric effects in both bending and torsional directions are considered, two kinds of electric coupling effects appear in forced vibration equations, and a new model for the electric circuit equation is developed. Lamb–Oseen vortex model is considered in this study. Both the external aerodynamic force and moment are simple harmonic loads. Three damping coefficients are considered in the present model. Based on Green’s function method, closed-form solutions of the piezoelectric energy harvester subjected to the fluid vortex are derived. Some published results are used to verify the present solutions. It can be concluded through analysis that when torsional vibration is considered, the bandwidth of the high energy area of the voltage becomes large and the bending-torsion coupled vibration energy harvester can produce more power than a transverse vibration energy harvester.

References

1.
Danesh-Yazdi
,
A. H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2014
, “
Green׳s Function Method for Piezoelectric Energy Harvesting Beams
,”
J. Sound Vib.
,
333
(
14
), pp.
3092
3108
.
2.
Dietl
,
J. M.
,
Wickenheiser
,
A. M.
, and
Garcia
,
E.
,
2010
, “
A Timoshenko Beam Model for Cantilevered Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
19
(
5
), p.
055018
.
3.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
4.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
19
(
11
), pp.
1311
1325
.
5.
Li
,
X.
,
Upadrashta
,
D.
,
Yu
,
K.
, and
Yang
,
Y.
,
2019
, “
Analytical Modeling and Validation of Multi-Mode Piezoelectric Energy Harvester
,”
Mech. Syst. Signal Process
,
124
, pp.
613
631
.
6.
Mahmoudi
,
S.
,
Kacem
,
N.
, and
Bouhaddi
,
N.
,
2014
, “
Enhancement of the Performance of a Hybrid Nonlinear Vibration Energy Harvester Based on Piezoelectric and Electromagnetic Transductions
,”
Smart Mater. Struct.
,
23
(
7
), p.
075024
.
7.
Yang
,
Y.
, and
Upadrashta
,
D.
,
2016
, “
Modeling of Geometric, Material and Damping Nonlinearities in Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
84
(
4
), pp.
2487
2504
.
8.
Jandaghian
,
A. A.
, and
Rahmani
,
O.
,
2017
, “
Size-Dependent Free Vibration Analysis of Functionally Graded Piezoelectric Plate Subjected to Thermo-Electro-Mechanical Loading
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
3039
3053
.
9.
Sebald
,
G.
,
Guyomar
,
D.
, and
Agbossou
,
A.
,
2009
, “
On Thermoelectric and Pyroelectric Energy Harvesting
,”
Smart Mater. Struct.
,
18
(
12
), p.
125006
.
10.
Zhao
,
X.
,
Iegaink
,
F.
,
Zhu
,
W.
, and
Li
,
Y.
,
2019
, “
Coupled Thermo-Electro-Elastic Forced Vibrations of Piezoelectric Laminated Beams by Means of Green's Functions
,”
Int. J. Mech. Sci.
,
156
, pp.
355
369
.
11.
Shan
,
X.
,
Li
,
H.
,
Yang
,
Y.
,
Feng
,
J.
,
Wang
,
Y.
, and
Xie
,
T.
,
2019
, “
Enhancing the Performance of an Underwater Piezoelectric Energy Harvester Based on Flow-Induced Vibration
,”
Energy
,
172
, pp.
134
140
.
12.
Shan
,
X.
,
Tian
,
H.
,
Chen
,
D.
, and
Xie
,
T.
,
2019
, “
A Curved Panel Energy Harvester for Aeroelastic Vibration
,”
Appl. Energy
,
249
, pp.
58
66
.
13.
Wang
,
J.
,
Geng
,
L.
,
Yang
,
K.
,
Zhao
,
L.
,
Wang
,
F.
, and
Yurchenko
,
D.
,
2020
, “
Dynamics of the Double-Beam Piezo-Magneto-Elastic Nonlinear Wind Energy Harvester Exhibiting Galloping-Based Vibration
,”
Nonlinear Dyn.
,
100
(
3
), pp.
1963
1983
.
14.
Song
,
R.
,
Shan
,
X.
,
Lv
,
F.
, and
Xie
,
T.
,
2015
, “
A Study of Vortex-Induced Energy Harvesting From Water Using PZT Piezoelectric Cantilever With Cylindrical Extension
,”
Ceram. Int.
,
41
(
1
), pp.
768
773
.
15.
Zhou
,
S.
,
Cao
,
J.
,
Erturk
,
A.
, and
Lin
,
J.
,
2013
, “
Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173901
.
16.
Huang
,
D.
,
Zhou
,
S.
,
Han
,
Q.
, and
Litak
,
G.
,
2020
, “
Response Analysis of the Nonlinear Vibration Energy Harvester With an Uncertain Parameter
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
234
(
2
), pp.
393
407
.
17.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.
18.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
.
19.
Xiong
,
L.
,
Tang
,
L.
,
Liu
,
K.
, and
Mace
,
B. R.
,
2018
, “
Broadband Piezoelectric Vibration Energy Harvesting Using a Nonlinear Energy Sink
,”
J. Phys. D: Appl. Phys.
,
51
(
18
), p.
185502
.
20.
Barton
,
D. A.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.
21.
Xie
,
J.
,
Mane
,
X.
,
Green
,
C.
,
Mossi
,
K.
, and
Leang
,
K. K.
,
2010
, “
Performance of Thin Piezoelectric Materials for Pyroelectric Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
3
), pp.
243
249
.
22.
Khodayari
,
A.
,
Pruvost
,
S.
,
Sebald
,
G.
,
Guyomar
,
D.
, and
Mohammadi
,
S.
,
2009
, “
Nonlinear Pyroelectric Energy Harvesting From Relaxor Single Crystals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
4
), pp.
693
699
.
23.
Weinstein
,
L. A.
,
Cacan
,
M. R.
,
So
,
P.
, and
Wright
,
P.
,
2012
, “
Vortex Shedding Induced Energy Harvesting From Piezoelectric Materials in Heating, Ventilation and air Conditioning Flows
,”
Smart Mater. Struct.
,
21
(
4
), p.
045003
.
24.
Hu
,
Y.
,
Yang
,
B.
,
Chen
,
X.
,
Wang
,
X.
, and
Liu
,
J.
,
2018
, “
Modeling and Experimental Study of a Piezoelectric Energy Harvester From Vortex Shedding-Induced Vibration
,”
Energy Convers. Manage.
,
162
, pp.
145
158
.
25.
Shan
,
X.
,
Song
,
R.
,
Liu
,
B.
, and
Xie
,
T.
,
2015
, “
Novel Energy Harvesting: A Macro Fiber Composite Piezoelectric Energy Harvester in the Water Vortex
,”
Ceram. Int.
,
41
(
1
), pp.
763
767
.
26.
Wang
,
J.
,
Sun
,
S.
,
Tang
,
L.
,
Hu
,
G.
, and
Liang
,
J.
,
2021
, “
On the Use of Metasurface for Vortex-Induced Vibration Suppression or Energy Harvesting
,”
Energy Convers. Manage.
,
235
, p.
113991
.
27.
Zhang
,
C.
,
Hu
,
G.
,
Yurchenko
,
D.
,
Lin
,
P.
,
Gu
,
S.
,
Song
,
D.
,
Peng
,
H.
, and
Wang
,
J.
,
2021
, “
Machine Learning Based Prediction of Piezoelectric Energy Harvesting From Wake Galloping
,”
Mech. Syst. Signal Process
,
160
, p.
107876
.
28.
Yang
,
K.
,
Qiu
,
T.
,
Wang
,
J.
, and
Tang
,
L.
,
2020
, “
Magnet-Induced Monostable Nonlinearity for Improving the VIV-Galloping-Coupled Wind Energy Harvesting Using Combined Cross-Sectioned Bluff Body
,”
Smart Mater. Struct.
,
29
(
7
), p.
07LT01
.
29.
Yang
,
K.
,
Su
,
K.
,
Wang
,
J.
,
Wang
,
J.
,
Yin
,
K.
, and
Litak
,
G.
,
2020
, “
Piezoelectric Wind Energy Harvesting Subjected to the Conjunction of Vortex-Induced Vibration and Galloping: Comprehensive Parametric Study and Optimization
,”
Smart Mater. Struct.
,
29
(
7
), p.
075035
.
30.
Deivasigamani
,
A.
,
McCarthy
,
J. M.
,
John
,
S.
,
Watkins
,
S.
,
Trivailo
,
P.
, and
Coman
,
F.
,
2014
, “
Piezoelectric Energy Harvesting From Wind Using Coupled Bending-Torsional Vibrations
,”
Modern Appl. Sci.
,
8
(
4
), pp.
106
126
.
31.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer-Verlag
,
Berlin
.
32.
Banerjee
,
J.
, and
Williams
,
F.
,
1994
, “
Coupled Bending-Torsional Dynamic Stiffness Matrix of an Axially Loaded Timoshenko Beam Element
,”
Int. J. Solids Struct.
,
31
(
6
), pp.
749
762
.
33.
Zhou
,
Y. G.
,
Chen
,
Y. M.
, and
Ding
,
H. J.
,
2005
, “
Analytical Solutions to Piezoelectric Bimorphs Based on Improved FSDT Beam Model
,”
Smart Struct. Syst.
,
1
(
3
), pp.
309
324
.
34.
Zhao
,
X.
,
Yang
,
E.
,
Li
,
Y.
, and
Crossley
,
W.
,
2017
, “
Closed-Form Solutions for Forced Vibrations of Piezoelectric Energy Harvesters by Means of Green’s Functions
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2372
2387
.
35.
Stoykov
,
S.
, and
Ribeiro
,
P.
,
2010
, “
Nonlinear Forced Vibrations and Static Deformations of 3D Beams With Rectangular Cross Section: The Influence of Warping, Shear Deformation and Longitudinal Displacements
,”
Int. J. Mech. Sci.
,
52
(
11
), pp.
1505
1521
.
36.
Han
,
H.
,
Cao
,
D.
, and
Liu
,
L.
,
2017
, “
Green's Functions for Forced Vibration Analysis of Bending-Torsion Coupled Timoshenko Beam
,”
Appl. Math. Model.
,
45
, pp.
621
635
.
37.
Banerjee
,
J.
, and
Williams
,
F.
,
1992
, “
Coupled Bending-Torsional Dynamic Stiffness Matrix for Timoshenko Beam Elements
,”
Comput. Struct.
,
42
(
3
), pp.
301
310
.
38.
Li
,
X.
,
Ding
,
H.
, and
Chen
,
W.
,
2008
, “
Three-Dimensional Analytical Solution for a Transversely Isotropic Functionally Graded Piezoelectric Circular Plate Subject to a Uniform Electric Potential Difference
,”
Sci. China, Ser. G
,
51
(
8
), pp.
1116
1125
.
39.
Li
,
X.
,
Li
,
P.
,
Wu
,
T.
,
Shi
,
M.
, and
Zhu
,
Z.
,
2014
, “
Three-Dimensional Fundamental Solutions for one-Dimensional Hexagonal Quasicrystal With Piezoelectric Effect
,”
Phys. Lett. A
,
378
(
10
), pp.
826
834
.
40.
Li
,
X.
,
Zhao
,
X.
, and
Li
,
Y.
,
2014
, “
Green's Functions of the Forced Vibration of Timoshenko Beams With Damping Effect
,”
J. Sound Vib.
,
333
(
6
), pp.
1781
1795
.
41.
Roshko
,
A.
,
1954
,
On the Development of Turbulent Wakes From Vortex Streets
,
U.S. Government Printing Office
,
Washington, DC
.
You do not currently have access to this content.