Abstract

This paper investigates the shock isolation characteristics of an electromagnetic bistable vibration isolator (BVI) with tunable magnetic controlled stiffness. The theoretical model of the BVI is established. The maximum acceleration ratio (MAR), maximum absolute displacement ratio (MADR), and maximum relative displacement ratio (MRDR) are introduced to evaluate the shock isolation performance of the BVI. The kinetic and potential energy are observed to further explore the performance of the BVI. The effects of the potential barrier, shape of potential well, and damping ratio on the BVI are discussed compared with the linear vibration isolators (LVIs). The results demonstrate that the intrawell oscillations and snap-through oscillations are determined by the excitation amplitude and duration time of main pulse. MADR and MRDR of the BVI are smaller than those of the LVI. The maximum acceleration peak amplitude of the BVI is far below that of the LVI, especially when the snap-through oscillation occurs. In brief, the proposed BVI has a better shock isolation performance than the LVI and has the potential to suppress the shock of space structures during the launch and on-orbit deploying process.

References

1.
Ding
,
J.
, and
Tzou
,
H.
,
2002
, “
Micro-Electromechanics of Sensor Patches of Free Paraboloidal Shell Structronic Systems
,”
Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. Recent Advances in Solids and Structures
,
New Orleans, LA
,
Nov. 17–22
, pp.
191
199
.
2.
Zhang
,
S. X.
,
Duan
,
B. Y.
,
Yang
,
G. G.
,
Zong
,
Y. L.
, and
Zhang
,
Y. Q.
,
2013
, “
An Approximation of Pattern Analysis for Distorted Reflector Antennas Using Structural-Electromagnetic Coupling Model
,”
IEEE Trans. Antennas Propag.
,
61
(
9
), pp.
4844
4847
.
3.
Meguro
,
A.
,
Shintate
,
K.
,
Usui
,
M.
, and
Tsujihata
,
A.
,
2009
, “
In-Orbit Deployment Characteristics of Large Deployable Antenna Reflector Onboard Engineering Test Satellite VIII
,”
Acta Astronaut.
,
65
(
9–10
), pp.
1306
1316
.
4.
Jha
,
A. K.
,
Inman
,
D. J.
, and
Plaut
,
R. H.
,
2002
, “
Free Vibration Analysis of an Inflated Toroidal Shell
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
387
396
.
5.
Sharma
,
A.
,
Kumar
,
R.
,
Vaish
,
R.
, and
Chauhan
,
V. S.
,
2015
, “
Active Vibration Control of Space Antenna Reflector Over Wide Temperature Range
,”
Compos. Struct.
,
128
, pp.
291
304
.
6.
Wang
,
J.
,
Sun
,
S.
,
Tang
,
L.
,
Hu
,
G.
, and
Liang
,
J.
,
2021
, “
On the Use of Metasurface for Vortex-Induced Vibration Suppression or Energy Harvesting
,”
Energy Convers. Manage.
,
235
, p.
113991
.
7.
Algermissen
,
S.
,
Monner
,
H. P.
,
Knott
,
P.
, and
Sekora
,
R.
,
2011
, “
Closed-Loop Subspace Identification for Vibration Control of Structure Integrated Antenna Arrays
,”
2011 Aerospace Conference
,
Big Sky, MT
,
Mar. 5–12
, IEEE, pp.
1
12
.
8.
Lv
,
L.
,
Wang
,
Y.
,
Shi
,
H.
,
Xian
,
K.
, and
Peng
,
F.
,
2015
, “
Numerical and Experimental Study on Optimal Control for Active Vibration Suppression of the Antenna Structure
,”
34th Chinese Control Conference (CCC)
,
Hangzhou, China
,
July 28–30
, IEEE, pp.
2407
2412
.
9.
Luo
,
Y. J.
,
Xu
,
M. L.
,
Yan
,
B.
, and
Zhang
,
X. N.
,
2015
, “
PD Control for Vibration Attenuation in Hoop Truss Structure Based on a Novel Piezoelectric Bending Actuator
,”
J. Sound Vib.
,
339
, pp.
11
24
.
10.
An
,
Z. Y.
,
Xu
,
M. L.
,
Luo
,
Y. J.
, and
Wu
,
C. S.
,
2015
, “
Active Vibration Control for a Large Annular Flexible Structure via a Macro-Fiber Composite Strain Sensor and Voice Coil Actuator
,”
Int. J. Appl. Mech.
,
7
(
4
), p.
1550066
.
11.
Li
,
D.
,
Jiang
,
J.
,
Liu
,
W.
, and
Fan
,
C.
,
2015
, “
A new Mechanism for the Vibration Control of Large Flexible Space Structures With Embedded Smart Devices
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1653
1659
.
12.
Junkins
,
J. L.
, and
Kim
,
Y.
,
1993
,
Introduction to Dynamics and Control of Flexible Structures
,
AIAA Education Series
,
Washington, DC
.
13.
Preumont
,
A.
,
2002
,
Responsive Systems for Active Vibration Control
,
Springer Science & Business Media
,
Brussels, Belgium
.
14.
Lan
,
C. C.
,
Yang
,
S. A.
, and
Wu
,
Y. S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
15.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
16.
Zhang
,
L. J.
,
Zhu
,
C. M.
,
Shi
,
X.
, and
Zhang
,
P.
,
2010
, “
A Novel Shock Isolator for Heavy Structure Installation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
C2
), pp.
283
292
.
17.
Ma
,
H. Y.
,
Yan
,
B.
,
Zhang
,
L.
,
Zheng
,
W. G.
,
Wang
,
P. F.
, and
Wu
,
C. Y.
,
2020
, “
On the Design of Nonlinear Damping With Electromagnetic Shunt Damping
,”
Int. J. Mech. Sci.
,
175
, p.
105513
.
18.
Ma
,
H. Y.
, and
Yan
,
B.
,
2021
, “
Nonlinear Damping and Mass Effects of Electromagnetic Shunt Damping for Enhanced Nonlinear Vibration Isolation
,”
Mech. Syst. Signal Process
,
146
, p.
107010
.
19.
Yan
,
B.
,
Ma
,
H. Y.
,
Yu
,
N.
,
Zhang
,
L.
, and
Wu
,
C. Y.
,
2020
, “
Theoretical Modeling and Experimental Analysis of Nonlinear Electromagnetic Shunt Damping
,”
J. Sound Vib.
,
471
, p.
115184
.
20.
Yan
,
B.
,
Ma
,
H. Y.
,
Zhang
,
L.
,
Wu
,
C. Y.
, and
Zhang
,
X. N.
,
2020
, “
Electromagnetic Shunt Damping for Shock Isolation of Nonlinear Vibration Isolators
,”
J. Sound Vib.
,
479
, p.
115370
.
21.
Yan
,
B.
,
Ma
,
H. Y.
,
Zheng
,
W. G.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C. Y.
,
2019
, “
Nonlinear Electromagnetic Shunt Damping for Nonlinear Vibration Isolators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1851
1860
.
22.
Ismail
,
M. I.
, and
Ferguson
,
N. S.
,
2017
, “
Passive Shock Isolation Utilising Dry Friction
,”
Shock Vib.
,
2017
, pp.
1
21
.
23.
Silveira
,
M.
,
Pontes
,
B. R.
, and
Balthazar
,
J. M.
,
2014
, “
Use of Nonlinear Asymmetrical Shock Absorber to Improve Comfort on Passenger Vehicles
,”
J. Sound Vib.
,
333
(
7
), pp.
2114
2129
.
24.
Yan
,
B.
,
Wang
,
Z.
,
Ma
,
H.
,
Bao
,
H.
,
Wang
,
K.
, and
Wu
,
C.
,
2020
, “
A Novel Lever-Type Vibration Isolator With Eddy Current Damping
,”
J. Sound Vib.
,
494
, p.
115862
.
25.
Wu
,
Z. J.
,
Jing
,
X. J.
,
Sun
,
B.
, and
Li
,
F. M.
,
2016
, “
A 6DOF Passive Vibration Isolator Using X-Shape Supporting Structures
,”
J. Sound Vib.
,
380
, pp.
90
111
.
26.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
27.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(
1–2
), pp.
88
103
.
28.
Yao
,
Y. H.
,
Li
,
H. G.
,
Li
,
Y.
, and
Wang
,
X. J.
,
2020
, “
Analytical and Experimental Investigation of a High-Static-Low-Dynamic Stiffness Isolator With Cam-Roller-Spring Mechanism
,”
Int. J. Mech. Sci.
,
186
, p.
105888
.
29.
Yan
,
L.
,
Xuan
,
S.
, and
Gong
,
X.
,
2018
, “
Shock Isolation Performance of a Geometric Anti-Spring Isolator
,”
J. Sound Vib.
,
413
, pp.
120
143
.
30.
Li
,
M.
,
Cheng
,
W.
, and
Xie
,
R. L.
,
2021
, “
A Quasi-Zero-Stiffness Vibration Isolator Using a Cam Mechanism With User-Defined Profile
,”
Int. J. Mech. Sci.
,
189
, p.
105938
.
31.
Zhou
,
J. X.
,
Xu
,
D. L.
, and
Bishop
,
S.
,
2015
, “
A Torsion Quasi-Zero Stiffness Vibration Isolator
,”
J. Sound Vib.
,
338
, pp.
121
133
.
32.
Kim
,
K. R.
,
You
,
Y. H.
, and
Ahn
,
H. J.
,
2013
, “
Optimal Design of a QZS Isolator Using Flexures for a Wide Range of Payload
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
911
917
.
33.
Ahn
,
H. J.
,
2008
, “
Performance Limit of a Passive Vertical Isolator Using a Negative Stiffness Mechanism
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2357
2364
.
34.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
35.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.
36.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
37.
Tang
,
B.
, and
Brennan
,
M. J.
,
2014
, “
On the Shock Performance of a Nonlinear Vibration Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
81
, pp.
207
214
.
38.
Ma
,
Y.
,
He
,
M.
,
Shen
,
W.
, and
Ren
,
G.
,
2015
, “
A Planar Shock Isolation System With High-Static-Low-Dynamic-Stiffness Characteristic Based on Cables
,”
J. Sound Vib.
,
358
, pp.
267
284
.
39.
Deng
,
T. C.
,
Wen
,
G. L.
,
Ding
,
H.
,
Lu
,
Z. Q.
, and
Chen
,
L. Q.
,
2020
, “
A Bio-Inspired Isolator Based on Characteristics of Quasi-Zero Stiffness and Bird Multi-Layer Neck
,”
Mech. Syst. Signal Process
,
145
, p.
106967
.
40.
Jiang
,
G. Q.
,
Jing
,
X. J.
, and
Guo
,
Y. Q.
,
2020
, “
A Novel Bio-Inspired Multi-Joint Anti-Vibration Structure and Its Nonlinear HSLDS Properties
,”
Mech. Syst. Signal Process
,
138
, p.
106552
.
41.
Yan
,
G.
,
Zou
,
H. X.
,
Wang
,
S.
,
Zhao
,
L. C.
,
Gao
,
Q. H.
,
Tan
,
T.
, and
Zhang
,
W. M.
,
2020
, “
Large Stroke Quasi-Zero Stiffness Vibration Isolator Using Three-Link Mechanism
,”
J. Sound Vib.
,
478
, p.
115344
.
42.
Yan
,
B.
,
Ma
,
H. Y.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C. Y.
,
2019
, “
Nonlinear Dynamics Analysis of a Bi-State Nonlinear Vibration Isolator With Symmetric Permanent Magnets
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2499
2519
.
43.
Yan
,
B.
,
Ma
,
H. Y.
,
Zhang
,
L.
,
Zheng
,
W. G.
,
Wang
,
K.
, and
Wu
,
C. Y.
,
2020
, “
A Bistable Vibration Isolator With Nonlinear Electromagnetic Shunt Damping
,”
Mech. Syst. Signal Process
,
136
, p.
106504
.
44.
Harne
,
R. L.
, and
Wang
,
K.-W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
John Wiley & Sons
,
New York
.
45.
Furlani
,
E. P.
,
2001
,
Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications
,
Academic Press
,
San Diego, CA
.
46.
Yan
,
B.
,
Zhang
,
X. N.
,
Luo
,
Y. J.
,
Zhang
,
Z. F.
,
Xie
,
S. L.
, and
Zhang
,
Y. H.
,
2014
, “
Negative Impedance Shunted Electromagnetic Absorber for Broadband Absorbing: Experimental Investigation
,”
Smart Mater. Struct.
,
23
(
12
), p.
125044
.
47.
Yan
,
B.
,
Ma
,
H. Y.
,
Zhao
,
C. X.
,
Wu
,
C. Y.
,
Wang
,
K.
, and
Wang
,
P. F.
,
2018
, “
A Vari-Stiffness Nonlinear Isolator With Magnetic Effects: Theoretical Modeling and Experimental Verification
,”
Int. J. Mech. Sci.
,
148
, pp.
745
755
.
48.
Xingtian
,
L.
,
Xiuchang
,
H.
, and
Hongxing
,
H.
,
2014
, “
Performance of a Zero Stiffness Isolator Under Shock Excitations
,”
J. Vib. Control
,
20
(
14
), pp.
2090
2099
.
49.
Tseng
,
W.-Y.
, and
Dugundji
,
J.
,
1971
, “
Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
467
476
.
50.
Vakakis
,
A. F.
,
2017
, “
Intentional Utilization of Strong Nonlinearity in Structural Dynamics
,”
Procedia Eng.
,
199
, pp.
70
77
.
51.
Zheng
,
W.
,
Yan
,
B.
,
Ma
,
H.
,
Wang
,
R.
,
Jia
,
J.
,
Zhang
,
L.
, and
Wu
,
C.
,
2019
, “
Tuning of Natural Frequency With Electromagnetic Shunt Mass
,”
Smart Mater. Struct.
,
28
(
2
), p.
025026
.
You do not currently have access to this content.