Abstract

The dynamic performance of an integrated quasi-zero stiffness (IQZS) isolator which is constructed by a single elastic structure is investigated in this study. This prototype exhibits the characteristics of the best simplicity, high reliability, and without friction by using the minimum number of elements. For completeness, the static properties of the IQZS isolator are provided at first. And then, the dynamic behavior is analyzed and the frequency response under harmonic excitation is derived by using an equivalent mechanical model. Frequency response curves (FRCs) under force excitation condition are obtained by using the harmonic balance method (HBM). Moreover, the dynamic performance of the nonlinear isolator supporting a lumped mass is investigated, and the vibration isolation performance is evaluated by utilizing force transmissibility and comparing with an equivalent linear system with the same design parameter setting. It can be concluded that the effective isolation range of the nonlinear isolator is broader than the linear counterpart. The effects of system parameters on the transmissibility are also examined. At last, the comparison between the analytical and experimental results under force excitation shows that the analytical model of the IQZS isolator is accurate in terms of force transmissibility. The calculation results may provide a theoretical basis for designing this class of IQZS isolator in engineering practice.

References

1.
Lee
,
D. O.
,
Park
,
G.
, and
Han
,
J. H.
,
2015
, “
Experimental Study on On-Orbit and Launch Environment Vibration Isolation Performance of a Vibration Isolator Using Bellows and Viscous Fluid
,”
Aerosp. Sci. Technol.
,
45
, pp.
1
9
.
2.
Gunston
,
T. P.
,
Rebelle
,
J.
, and
Griffin
,
M. J.
,
2004
, “
A Comparison of Two Methods of Simulating Seat Suspension Dynamic Performance
,”
J. Sound Vib.
,
278
(
1
), pp.
117
134
.
3.
Mead
,
D. J.
,
1998
,
Passive Vibration Control
,
Wiley
,
New York
.
4.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Taylor & Francis Group
,
New York
.
5.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
6.
Carrella
,
A.
,
Waters
,
T. P.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Shin
,
K.
,
2008
, “
On the Design of a High-Static-Low-Dynamic-Stiffness Isolator Using Linear Mechanical Springs and Magnets
,”
J. Sound Vib.
,
315
(
3
), pp.
712
720
.
7.
Liu
,
X. T.
,
Huang
,
X. C.
, and
Hua
,
H. X.
,
2013
, “
On the Characteristics of a Quasi-Zero Stiffness Isolator Using Euler Buckled Beam as Negative Stiffness Corrector
,”
J. Sound Vib.
,
332
(
14
), pp.
3359
3376
.
8.
Shaw
,
A. D.
,
Neild
,
S. A.
,
Wagg
,
D. J.
,
Weaver
,
P. M.
, and
Carrella
,
A.
,
2013
, “
A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound Vib.
,
332
(
24
), pp.
6265
6275
.
9.
Li
,
Z. Y.
, and
Chen
,
Q.
,
2018
, “
A Liquid Spring With High-Static-Low-Dynamic Stiffness
,”
5th International Conference on Mechanics and Mechatronics Research
, Vol.
417
, p.
012029
.
10.
Zhou
,
J. X.
,
Wang
,
X. L.
,
Xu
,
D. L.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With cam-Roller-Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
11.
Sun
,
X. T.
,
Jing
,
X. J.
,
Xu
,
J.
, and
Cheng
,
L.
,
2014
, “
Vibration Isolation via a Scissor-Like Structured Platform
,”
J. Sound Vib.
,
333
(
9
), pp.
2404
2420
.
12.
Yan
,
B.
,
Ma
,
H. Y.
,
Jian
,
B.
,
Wang
,
K.
, and
Wu
,
C. Y.
,
2019
, “
Nonlinear Dynamics Analysis of a bi-State Nonlinear Vibration Isolator With Symmetric Performance Magnets
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2499
2519
.
13.
Vo
,
N. Y. P.
, and
Le
,
T. D.
,
2019
, “
Adaptive Pneumatic Vibration Isolation Platform
,”
Mech. Syst. Signal Process.
,
133
, p.
106258
.
14.
Valeev
,
A.
,
2011
, “
Vibration Isolators for Oil-and Gas-Transfer Equipment With a Low Vibration Frequency
,”
Chem. Pet. Eng.
,
47
(
5–6
), pp.
374
377
.
15.
Araki
,
Y.
,
Kimura
,
K.
,
Asai
,
T.
,
Masui
,
T.
,
Omori
,
T.
, and
Kainuma
,
R.
,
2015
, “
Integrated Mechanical and Material Design of Quasi-Zero-Stiffness Vibration Isolator With Super-Elastic Cu-Al-Mn Shape Memory Alloy Bars
,”
J. Sound Vib.
,
358
, pp.
74
83
.
16.
Valeev
,
A.
,
Zotov
,
A.
, and
Kharisov
,
S.
,
2015
, “
Designing of Compact Low Frequency Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Low Freq. Noise Vib. Active Control
,
34
(
4
), pp.
459
474
.
17.
Valeev
,
A.
, and
Kharisov
,
S.
,
2016
, “
Application of Vibration Isolators With a Low Stiffness for the Strongly Vibrating Equipment
,”
Proceedings of the 2nd International Conference on Industrial Engineering
, Vol.
150
, pp.
641
646
.
18.
Valeev
,
A.
,
Zotov
,
A.
, and
Tokarev
,
A.
,
2017
, “
Study of Application of Vibration Isolators With Quasi-Zero Stiffness for Reducing Dynamics Loads on the Foundation
,”
Procedia Eng.
,
176
, pp.
137
143
.
19.
Anvar
,
V.
,
2017
, “
Vibration Isolating Metamaterial With Arc-Structure
,”
IOP Conference Series: Materials Science and Engineering
,
225
, p.
012142
.
20.
Valeev
,
A.
,
2018
, “
Dynamics of a Group of Quasi-Zero Stiffness Vibration Isolators With Slightly Different Parameters
,”
J. Low Freq. Noise Vib. Active Control
,
37
(
3
), pp.
640
653
.
21.
Shaw
,
A. D.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2013
, “
Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts
,”
J. Sound Vib.
,
332
(
6
), pp.
1437
1455
.
22.
Li
,
Y. L.
, and
Xu
,
D. L.
,
2017
, “
Vibration Attenuation of High Dimensional Quasi-Zero Stiffness Floating Raft System
,”
Int. J. Mech. Sci.
,
126
, pp.
186
195
.
23.
Wang
,
X. J.
,
Liu
,
H.
,
Chen
,
Y. Q.
, and
Gao
,
P.
,
2018
, “
Beneficial Stiffness Design of a High-Static-Low-Dynamic-Stiffness Vibration Isolator Based on Static and Dynamic Analysis
,”
Int. J. Mech. Sci.
,
142–143
, pp.
235
244
.
24.
Cheng
,
C.
,
Li
,
S. M.
,
Wang
,
Y.
, and
Jiang
,
X. X.
,
2017
, “
Force and Displacement Transmissibility of a Quasi-Zero Stiffness Vibration Isolator With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
87
(
14
), pp.
2267
2279
.
25.
Dong
,
G. X.
,
Zhang
,
Y. H.
,
Luo
,
Y. J.
,
Xie
,
S. L.
, and
Zhang
,
X. N.
,
2018
, “
Enhanced Isolation Performance of a High-Static-Low-Dynamic Stiffness Isolator With Geometric Nonlinear Damping
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2339
2356
.
26.
Liu
,
C. R.
, and
Yu
,
K. P.
,
2018
, “
A High-Static-Low-Dynamic-Stiffness Vibration Isolator With the Auxiliary System
,”
Nonlinear Dyn.
,
94
(
4
), pp.
1549
1567
.
27.
Kang
,
B. B.
,
Li
,
H. J.
,
Zhang
,
Z.
, and
Zhou
,
H. Y.
,
2018
, “
A Study of a Ruzicka Vibration Isolator Model With High-Static-Low-Dynamic Characteristics
,”
Mechanika
,
24
(
4
), pp.
422
431
.
28.
Sun
,
X. T.
,
Wang
,
F.
, and
Xu
,
J.
,
2019
, “
Analysis, Design and Experiment of Continuous Isolation Structure With Local Quasi-Zero-Stiffness Property by Magnetic Interaction
,”
Int. J. Non Linear Mech.
,
116
, pp.
289
301
.
29.
Wang
,
M.
,
Chen
,
X. D.
, and
Li
,
X. Q.
,
2016
, “
An Ultra-Low Frequency Two Dofs’ Vibration Isolator Using Positive and Negative Stiffness in Parallel
,”
Math. Probl. Eng.
, pp.
1
15
.
You do not currently have access to this content.