Abstract

This paper presents the vibroacoustic response of pure functionally graded (FG) plates under transient loading of mechanical nature. The functionally graded plate is modeled using the conventional first-order shear deformation theory (FSDT) to incorporate the effects of transverse shear and rotary inertia. The mid-surface variables are determined using the finite element method. Transient structural response is determined using Newmark Beta time marching scheme and the acoustic pressure in the free field is obtained using the time-domain Rayleigh integral. The effective material properties of the FG plate and the transient response of both the structural and acoustic fields have been computed in matlab. The influence of the volume fraction index, thickness ratio, and boundary conditions of pure FG plate on its transient vibroacoustic response is investigated by a detailed parametric study.

References

1.
Craggs
,
A.
,
1971
, “
The Transient Response of a Coupled Plate-Acoustic System Using Plate and Acoustic Finite Elements
,”
J. Sound Vib.
,
15
(
4
), pp.
509
528
.
2.
Kirkup
,
S. M.
,
2019
, “
The Boundary Element Method in Acoustics: A Survey
,”
Appl. Sci.
,
9
(
8
), p.
1642
.
3.
Bettess
,
P.
,
1977
, “
Infinite Elements
,”
Int. J. Numer. Meth. Eng
,
11
(
1
), pp.
53
64
.
4.
Kuo
,
Y. M.
,
Lin
,
H. J.
, and
Wang
,
C. N.
,
2008
, “
Sound Transmission Across Orthotropic Laminates With a 3D Model
,”
Appl. Acoust.
,
69
(
11
), pp.
951
959
.
5.
Matsikoudi Iliopoulou
,
M.
, and
Trochidis
,
A.
,
1992
, “
Sound Transmission Through Composite Laminates
,”
Acta Acust. Acust.
,
76
(
1
), pp.
38
44
.
6.
Wolf
,
J. P.
, and
Song
,
C.
,
2000
, “
The Scaled Boundary Finite-Element Method—A Primer: Derivations
,”
Comput. Struct.
,
78
(
1–3
), pp.
191
210
.
7.
Zienkiewicz
,
O.
,
Kelly
,
D.
, and
Bettess
,
P.
,
1979
, “The Sommerfeld (Radiation) Condition on Infinite Domains and Its Modelling in Numerical Procedures,”
Computing Methods in Applied Sciences and Engineering, 1977, I. Lecture Notes in Mathematics, v704
,
R.
Glowinski
,
J. L.
Lions
, and
I.
Laboria
, eds.,
Springer
,
New York
, pp.
169
203
.
8.
Fahy
,
F. J.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration: Radiation, Transmission and Response
, 2nd ed.,
Elsevier
,
New York
.
9.
Kallivokas
,
L. F.
, and
Bielak
,
J.
,
1993
, “
Time-Domain Analysis of Transient Structural Acoustics Problems Based on the Finite Element Method and a Novel Absorbing Boundary Element
,”
J. Acoust. Soc. Am.
,
94
(
6
), pp.
3480
3492
.
10.
Givoli
,
D.
,
2013
,
Numerical Methods for Problems in Infinite Domains
,
Elsevier
,
New York
.
11.
Qi
,
Q.
, and
Geers
,
T. L.
,
1998
, “
Evaluation of the Perfectly Matched Layer for Computational Acoustics
,”
J. Comput. Phys.
,
139
(
1
), pp.
166
183
.
12.
Everstine
,
G. C.
,
1997
, “
Finite Element Formulations of Structural Acoustics Problems
,”
Comput. Struct.
,
65
(
3
), pp.
307
321
. S0045-7949(96)00252-0
13.
Song
,
C.
,
2009
, “
The Scaled Boundary Finite Element Method in Structural Dynamics
,”
Int. J. Numer. Meth. Eng.
,
77
(
8
), pp.
1139
1171
.
14.
Wolf
,
J. P.
,
2003
,
The Scaled Boundary Finite Element Method
,
John Wiley & Sons Ltd.
,
New York
.
15.
Maidanik
,
G.
,
1962
, “
Response of Ribbed Panels to Reverberant Acoustic Fields
,”
J. Acoust. Soc. Am.
,
34
(
6
), pp.
809
826
.
16.
Laulagnet
,
B.
,
1998
, “
Sound Radiation by a Simply Supported Unbaffled Plate
,”
J. Acoust. Soc. Am.
,
103
(
5
), pp.
2451
2462
.
17.
Brouard
,
B.
,
Lafarge
,
D.
, and
Allard
,
J. F.
,
1995
, “
A General Method of Modelling Sound Propagation in Layered Media
,”
J. Sound Vib.
,
183
(
1
), pp.
129
142
.
18.
Atalla
,
N.
,
Nicolas
,
J.
, and
Gauthier
,
C.
,
1996
, “
Acoustic Radiation of an Unbaffled Vibrating Plate With General Elastic Boundary Conditions
,”
J. Acoust. Soc. Am.
,
99
(
3
), pp.
1484
1494
.
19.
Putra
,
A.
, and
Thompson
,
D.
,
2010
, “
Sound Radiation From Rectangular Baffled and Unbaffled Plates
,”
Appl. Acoust.
,
71
(
12
), pp.
1113
1125
.
20.
Roussos
,
L. A.
,
1984
, “
Noise Transmission Loss of a Rectangular Plate in an Infinite Baffle
,”
107th Meeting of the Acoustical Society of America
,
Norfolk, VA
, p.
7
.
21.
Ohga
,
M.
, and
Shigematsu
,
T.
,
1987
, “
Transient Analysis of Plates by a Combined Finite Element-Transfer Matrix Method
,”
Comput. Struct.
,
26
(
4
), pp.
543
549
.
22.
Ou
,
D.
, and
Mak
,
C. M.
,
2011
, “
The Effects of Elastic Supports on the Transient Vibroacoustic Response of a Window Caused by Sonic Booms
,”
J. Acoust. Soc. Am.
,
130
(
2
), pp.
783
790
.
23.
Xin
,
F.
,
Lu
,
T.
, and
Chen
,
C.
,
2008
, “
Vibroacoustic Behavior of Clamp Mounted Double-Panel Partition With Enclosure Air Cavity
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3604
3612
.
24.
Xin
,
F.
,
Lu
,
T.
, and
Chen
,
C.
,
2010
, “
Sound Transmission Through Simply Supported Finite Double-Panel Partitions With Enclosed Air Cavity
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011008
.
25.
Xin
,
F.
, and
Lu
,
T.
,
2010
, “
Analytical Modeling of Fluid Loaded Orthogonally Rib-Stiffened Sandwich Structures: Sound Transmission
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1374
1396
.
26.
Shen
,
C.
,
Xin
,
F.
, and
Lu
,
T.
,
2016
, “
Sound Transmission Across Composite Laminate Sandwiches: Influence of Orthogonal Stiffeners and Laminate Layup
,”
Compos. Struct.
,
143
, pp.
310
316
.
27.
Reddy
,
J. N.
,
2000
, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Meth. Eng.
,
47
(
1–3
), pp.
663
684
.
28.
Zenkour
,
A. M.
,
2006
, “
Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates
,”
Appl. Math. Model.
,
30
(
1
), pp.
67
84
.
29.
Matsunaga
,
H.
,
2008
, “
Free Vibration and Stability of Functionally Graded Plates According to a 2-D Higher-Order Deformation Theory
,”
Compos. Struct.
,
82
(
4
), pp.
499
512
.
30.
Kashtalyan
,
M.
,
2004
, “
Three-Dimensional Elasticity Solution for Bending of Functionally Graded Rectangular Plates
,”
Eur. J. Mech. A Solids
,
23
(
5
), pp.
853
864
.
31.
Thai
,
H. T.
, and
Choi
,
D. H.
,
2013
, “
A Simple First-Order Shear Deformation Theory for the Bending and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Struct.
,
101
, pp.
332
340
.
32.
Kennedy
,
D.
,
Cheng
,
R.
,
Wei
,
S.
, and
Arevalo
,
F. A.
,
2016
, “
Equivalent Layered Models for Functionally Graded Plates
,”
Comput. Struct.
,
174
, pp.
113
121
.
33.
Moita
,
J. S.
,
Araújo
,
A. L.
,
Soares
,
C. M. M.
, and
Soares
,
C. A. M.
,
2018
, “
Vibration Analysis of Functionally Graded Material Sandwich Structures With Passive Damping
,”
Compos. Struct.
,
183
, pp.
407
415
.
34.
Jung
,
W. Y.
, and
Han
,
S. C.
,
2014
, “
Transient Analysis of FGM and Laminated Composite Structures Using a Refined 8-Node ANS Shell Element
,”
Composites, Part B
,
56
, pp.
372
383
.
35.
Hasheminejad
,
S. M.
, and
Shabanimotlagh
,
M.
,
2008
, “
Sound Insulation Characteristics of Functionally Graded Panels
,”
Acta Acust. Acust.
,
94
(
2
), pp.
290
300
.
36.
Yang
,
T.
,
Zheng
,
W.
,
Huang
,
Q.
, and
Li
,
S.
,
2016
, “
Sound Radiation of Functionally Graded Materials Plates in Thermal Environment
,”
Compos. Struct.
,
144
, pp.
165
176
.
37.
Chandra
,
N.
,
Raja
,
S.
, and
Gopal
,
K. V. N.
,
2014
, “
Vibro-Acoustic Response and Sound Transmission Loss Analysis of Functionally Graded Plates
,”
J. Sound Vib.
,
333
(
22
), pp.
5786
5802
.
38.
Chandra
,
N.
,
Raja
,
S.
, and
Gopal
,
K. V. N.
,
2015
, “
A Comprehensive Analysis on the Structural–Acoustic Aspects of Various Functionally Graded Plates
,”
Int. J. Appl. Mech.
,
07
(
05
), p.
1550072
.
39.
Chandra
,
N.
,
Nagendra Gopal
,
K. V.
, and
Raja
,
S.
,
2017
, “
Vibro-Acoustic Response of Sandwich Plates With Functionally Graded Core
,”
Acta Mech.
,
228
(
8
), pp.
2775
2789
.
40.
Yang
,
T.
,
Huang
,
Q.
, and
Li
,
S.
,
2016
, “
Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates Considering State Space Method
,”
Shock Vib.
,
2016
, pp.
1
15
.
41.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
, 2nd ed,
CRC Press
,
Boca Raton, FL
.
42.
Chopra
,
A. K.
,
2012
,
Dynamics of Structures
, 4th ed.,
Prentice Hall, Pearson Education
,
Boston, MA
.
43.
Ginsberg
,
J. H.
,
2018
,
Acoustics: A Textbook for Engineers and Physicists
,
Vol. 2
,
Springer
,
New York
.
44.
Ferreira
,
A. J. M.
,
2009
,
Matlab Codes for Finite Element Analysis
,
Springer
,
New York
.
You do not currently have access to this content.