Abstract

The tuned liquid damper (TLD) is a system used to reduce the response of tall structures. Numerical modeling is a very important tool when designing TLDs. Many existing numerical models are capable of accurately capturing the structure–TLD system response at serviceability levels, covering the range where TLDs are primarily intended to perform. However, these models often have convergence issues when considering more extreme structural excitations. The goal of this study is to develop a structure–TLD model without convergence limitations at large amplitude excitations. A structure–TLD numerical model where the TLD is represented by a two-dimensional incompressible smoothed particle hydrodynamics (ISPH) scheme is presented. The TLD contains damping screens which are represented by a force term based on the Morison equation. The performance of the model is assessed by comparing to experimental data for a structure–TLD system undergoing large amplitude excitations consisting of 4-h random signals and shorter transient signals. The model shows very good agreement with the experimental data for the structural response. The free surface response of the TLD is captured accurately by the model for the lower excitation forces considered, however as the excitation force is increased there are some discrepancies. The large amplitude excitations also result in smoothed particle hydrodynamics (SPH) fluid particles penetrating the boundaries, resulting in degradation of the model performance over the 4-h simulations. Overall, the model is shown to capture the response of a structure–TLD system undergoing large amplitude excitations well.

References

1.
International Organization for Standardization
,
2007
, “
ISO 10137
.”
2.
Tait
,
M. J.
,
2008
, “
Modelling and Preliminary Design of a Structure-TLD System
,”
Eng. Struct.
,
30
(
10
), pp.
2644
2655
.
3.
Tait
,
M. J.
, and
Deng
,
X.
,
2008
, “
The Performance of Structure-Tuned Liquid Damper Systems With Different Tank Geometries
,”
Struct. Control Health Monit.
,
17
(
3
), pp.
254
277
.
4.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Equivalent Linearized Mechanical Model for Tuned Liquid Dampers of Arbitrary Tank Shape
,”
ASME J. Fluids Eng.
,
133
(
6)
, pp.
1065
1075
.
5.
Love
,
J. S.
, and
Tait
,
M. J.
,
2014
, “
Equivalent Mechanical Model for Tuned Liquid Damper of Complex Tank Geometry Coupled to a 2D Structure
,”
Struct. Control Health Monit.
,
21
(
1
), pp.
43
60
.
6.
Kaneko
,
S.
, and
Ishikawa
,
M.
,
1999
, “
Modeling of Tuned Liquid Dampers With Submerged Nets
,”
ASME J. Pressure Vessel Technol.
,
121
(
3
), pp.
334
344
.
7.
Tait
,
M. J.
,
El Damatty
,
A. A.
,
Isyumov
,
N.
, and
Siddique
,
M. R.
,
2005
, “
Numerical Flow Models to Simulate Tuned Liquid Dampers (TLD) With Slat Screens
,”
J. Fluids Struct.
,
20
(
8
), pp.
1007
1023
.
8.
Love
,
J. S.
, and
Tait
,
M. J.
,
2010
, “
Nonlinear Simulation of a Tuned Liquid Damper With Damping Screens Using a Modal Expansion Technique
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1058
1077
.
9.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Non-Linear Multimodal Model for Tuned Liquid Dampers of Arbitrary Tank Geometry
,”
Int. J. Nonlinear Mech.
,
46
(
8
), pp.
1065
1075
.
10.
Love
,
J. S.
, and
Tait
,
M. J.
,
2015
, “
The Response of Structures Equipped With Tuned Liquid Dampers of Complex Geometry
,”
JVC/J. Vib. Control
,
21
(
6
), pp.
1171
1187
.
11.
Tait
,
M. J.
,
Isyumov
,
N.
, and
El Damatty
,
A. A.
,
2008
, “
Performance of Tuned Liquid Dampers
,”
J. Eng. Mech.
,
134
(
5
), pp.
417
427
.
12.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mont. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
13.
Lucy
,
L.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
(
12
), pp.
1013
1024
.
14.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.
15.
Violeau
,
D.
, and
Rogers
,
B. D.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future
,”
J. Hydraul. Res.
,
54
(
1
), pp.
1
26
.
16.
Sun
,
P. N.
,
Colagrossi
,
A.
,
Le Touzé
,
D.
, and
Zhang
,
A. M.
,
2019
, “
Extension of the δ-Plus-SPH Model for Simulating Vortex-Induced-Vibration Problems
,”
J. Fluids Struct.
,
90
, pp.
19
42
.
17.
Tafuni
,
A.
, and
Sahin
,
I.
,
2015
, “
Non-Linear Hydrodynamics of Thin Laminae Undergoing Large Harmonic Oscillations in a Viscous Fluid
,”
J. Fluids Struct.
,
52
, pp.
101
117
.
18.
Sun
,
P. N.
,
Le Touzé
,
D.
,
Oger
,
G.
, and
Zhang
,
A. M.
,
2021
, “
An Accurate FSI-SPH Modeling of Challenging Fluid-Structure Interaction Problems in Two and Three Dimensions
,”
Ocean Eng.
,
221
, p.
108552
.
19.
Bulian
,
G.
,
Souto-Iglesias
,
A.
,
Delorme
,
L.
, and
Botia-Vera
,
E.
,
2009
, “
Smoothed Particle Hydrodynamics (SPH) Simulation of a Tuned Liquid Damper (TLD) With Angular Motion
,”
J. Hydraul. Res.
,
48
(
Suppl. 1
), pp.
28
39
.
20.
Marsh
,
A.
,
Prakash
,
M.
,
Semercigil
,
E.
, and
Turan
,
O. F.
,
2011
, “
A Study of Sloshing Absorber Geometry for Structural Control With SPH
,”
J. Fluids Struct.
,
27
(
8
), pp.
1165
1181
.
21.
Green
,
M. D.
, and
Peiró
,
J.
,
2018
, “
Long Duration SPH Simulations of Sloshing in Tanks With a Low Fill Ratio and High Stretching
,”
Comput. Fluids
,
174
, pp.
179
199
.
22.
Kashani
,
A. H.
,
Halabian
,
A. M.
, and
Asghari
,
K.
,
2018
, “
A Numerical Study of Tuned Liquid Damper Based on Incompressible SPH Method Combined With TMD Analogy
,”
J. Fluids Struct.
,
82
, pp.
394
411
.
23.
McNamara
,
K. P.
,
Awad
,
B. N.
,
Tait
,
M. J.
, and
Love
,
J. S.
,
2021
, “
Incompressible Smoothed Particle Hydrodynamics Model of a Rectangular Tuned Liquid Damper Containing Screens
,”
J. Fluids Struct.
,
103
, p.
103295
.
24.
Morison
,
J. R.
,
O’Brien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
Pet. Trans. AIME
,
189
, pp.
149
154
.
25.
Tait
,
M. J.
,
2004
, “
The Performance of 1-D and 2-D Tuned Liquid Dampers
,”
Ph.D. thesis
,
University of Western Ontario
,
London, Ontario, Canada
.
26.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
27.
Cummins
,
S. J.
, and
Rudman
,
M.
,
1999
, “
An SPH Projection Method
,”
J. Comput. Phys.
,
152
(
2
), pp.
584
607
.
28.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.
29.
Nomeritae
,
Daly
,
E.
,
Grimaldi
,
S.
, and
Bui
,
H. H.
,
2016
, “
Explicit Incompressible SPH Algorithm for Free-Surface Flow Modelling: A Comparison With Weakly Compressible Schemes
,”
Adv. Water Resour.
,
97
, pp.
156
167
.
30.
Yeylaghi
,
S.
,
Moa
,
B.
,
Oshkai
,
P.
,
Buckham
,
B.
, and
Crawford
,
C.
,
2016
, “
ISPH Modelling of an Oscillating Wave Surge Converter Using an OpenMP-Based Parallel Approach
,”
J. Ocean Eng. Mar. Energy
,
2
(
3
), pp.
301
312
.
31.
Jiang
,
H.
,
You
,
Y.
,
Hu
,
Z.
,
Zheng
,
X.
, and
Ma
,
A.
,
2019
, “
Comparative Study on Violent Sloshing With Water Jet Flows by Using the ISPH Method
,”
Water
,
11
(
12
), p.
2590
.
32.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
.
33.
DualSPHysics
,
2020
,
DualSPHysics v5.0 Guide
,
DualSPHysics
, https://dual.sphysics.org/https://dual.sphysics.org/
34.
Shao
,
S.
, and
Lo
,
E. Y.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.
35.
Vickery
,
B. J.
, and
Davenport
,
A. G.
,
1970
, “
An Investigation of the Behaviour in Wind of the Proposed Centrepoint Tower
,” Research Report BLWT-1-70, Sydney, Australia.
36.
Monaghan
,
J. J.
,
1989
, “
On the Problem of Penetration in Particle Methods
,”
J. Comput. Phys.
,
82
(
1
), pp.
1
15
.
37.
Tait
,
M. J.
,
El Damatty
,
A. A.
, and
Isyumov
,
N.
,
2005
, “
An Investigation of Tuned Liquid Dampers Equipped With Damping Screens Under 2D Excitation
,”
Earthquake Eng. Struct. Dyn.
,
34
(
7
), pp.
719
735
.
You do not currently have access to this content.