Abstract

This paper is concerned with the nonlinear behaviors of acoustic waves produced by two degrees-of-freedom rigid oscillators containing nonlinearities and immersed in infinite fluid medium. The vibrations of the oscillators are computed by both the harmonic balance method (HBM) and the direct-time integration scheme, whereas the linearized Euler equations (LEEs) of the acoustic fluid are discretized by a fourth-order dispersion-relation-preserving (DRP) scheme in space and a four-level explicit time marching scheme in time. A constrained moving least-squares (CMLS) immersed boundary method (IBM) is used to enforce the boundary conditions on the common interfaces of the rigid oscillators and the Cartesian grid of the acoustic fluid. A serially staggered procedure is adopted to solve the governing equations of the oscillators and the acoustic fluid as a coupled system. The perfectly matched layer (PML) technique is utilized to damp out the out-going acoustic waves on the boundaries of the truncated computational domain to approximate the nonreflecting wave conditions. Physical insights into the mechanism of the nonlinear acoustic waves induced by super-harmonic resonances, principal resonances, internal resonances, and combination resonances of two degrees-of-freedom nonlinear oscillator systems are provided. The interference fringes of the acoustic waves due to the nonlinear vibration of the system are also discussed. Numerical results show that the sound fields radiated from the vibration system with the above nonlinear behaviors exhibit more complicated interference phenomena since the high-order harmonic components are introduced.

References

1.
Morse
,
P. M. C.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Acoustics
,
Princeton University Press
,
Princeton
, NJ.
2.
Kurbatskii
,
K. A.
,
1997
, “
Analytical Solutions of the Category 1, Benchmark Problems 1 and 2
,”
Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems
,
Tallahassee, FL
,
Nov. 4–5, 1996
, pp.
9
14
.
3.
Morris
,
P. J.
,
1995
, “
The Scattering of Sound From a Spatially Distributed Axisymmetric Cylindrical Source by a Circular Cylinder
,”
J. Acoust. Soc. Am.
,
97
(
5
), pp.
2651
2656
.
4.
Sherer
,
S. E.
,
2004
, “
Scattering of Sound From Axisymetric Sources by Multiple Circular Cylinders
,”
J. Acoust. Soc. Am.
,
115
(
2
), pp.
488
496
.
5.
Harari
,
I.
,
2006
, “
A Survey of Finite Element Methods for Time-Harmonic Acoustics
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
13–16
), pp.
1594
1607
.
6.
Seybert
,
A. F.
,
Rizzo
,
F. J.
,
Shippy
,
D. J.
, and
Soenarko
,
B.
,
1985
, “
An Advanced Computational Method for Radiation and Scattering of Acoustic Waves in Three Dimensions
,”
J. Acoust. Soc. Am.
,
77
(
2
), pp.
362
368
.
7.
Koopmann
,
G. H.
,
Song
,
L.
, and
Fahnline
,
J. B.
,
1989
, “
A Method for Computing Acoustic Fields Based on the Principle of Wave Superposition
,”
J. Acoust. Soc. Am.
,
86
(
6
), pp.
2433
2438
.
8.
Tam
,
C. K. W.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
9.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.
10.
Ghias
,
R.
,
Mittal
,
R.
, and
Dong
,
H.
,
2007
, “
A Sharp Interface Immersed Boundary Method for Compressible Viscous Flows
,”
J. Comput. Phys.
,
225
(
1
), pp.
528
553
.
11.
Qu
,
Y.
,
Shi
,
R.
, and
Batra
,
R. C.
,
2018
, “
An Immersed Boundary Formulation for Simulating High-Speed Compressible Viscous Flows With Moving Solids
,”
J. Comput. Phys.
,
354
, pp.
672
691
.
12.
de Tullio
,
M. D.
, and
Pascazio
,
G.
,
2016
, “
A Moving-Least-Squares Immersed Boundary Method for Simulating the Fluid–Structure Interaction of Elastic Bodies With Arbitrary Thickness
,”
J. Comput. Phys.
,
325
, pp.
201
225
.
13.
Sun
,
X.
,
Jiang
,
Y.
,
Liang
,
A.
, and
Jing
,
X.
,
2012
, “
An Immersed Boundary Computational Model for Acoustic Scattering Problems With Complex Geometries
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
3190
3199
.
14.
Xie
,
F.
,
Qu
,
Y.
,
Islam
,
M. A.
, and
Meng
,
G.
,
2020
, “
A Sharp-Interface Cartesian Grid Method for Time-Domain Acoustic Scattering From Complex Geometries
,”
Comput. Fluids
,
202
, p.
104498
.
15.
Cand
,
M.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2004
, “
3-Dimensional Noise Propagation Using a Cartesian Grid
,”
Collection of Technical Papers—10th AIAA/CEAS Aeroacoustics Conference 1
,
Manchester, Great Britain
,
May 10–12
, pp.
221
233
.
16.
Cheng
,
L.
,
Du
,
L.
,
Wang
,
X.
,
Wu
,
L.
,
Jing
,
X.
, and
Sun
,
X.
,
2018
, “
Influence of Non-Uniform Mean Flow on Acoustic Scattering From Complex Geometries
,”
Comput. Fluids
,
163
, pp.
20
31
.
17.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.
18.
Lauchle
,
G. C.
,
1976
, “
Interaction of a Spherical Acoustic Wave With an Elastic Spherical Shell
,”
J. Sound Vib.
,
44
(
1
), pp.
37
46
.
19.
Akkaş
,
N.
,
1977
, “
Radiation of Waves From a Spherical Shell Accelerating in an Acoustic Medium
,”
J. Sound Vib.
,
54
(
2
), pp.
273
283
.
20.
Guo
,
Y. P.
,
1994
, “
Sound Scattering by Bulkheads in Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
95
(
5
), pp.
2550
2559
.
21.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
,
2010
, “
Acoustic Signature of a Submarine Hull Under Harmonic Excitation
,”
Appl. Acoust.
,
71
(
1
), pp.
17
31
.
22.
Wei
,
Y.
, and
Wang
,
Y.
,
2013
, “
Unsteady Hydrodynamics of Blade Forces and Acoustic Responses of a Model Scaled Submarine Excited by Propeller's Thrust and Side-Forces
,”
J. Sound Vib.
,
332
(
8
), pp.
2038
2056
.
23.
Troccaz
,
P.
,
Woodcock
,
R.
, and
Laville
,
F.
,
2000
, “
Acoustic Radiation Due to the Inelastic Impact of a Sphere on a Rectangular Plate
,”
J. Acoust. Soc. Am.
,
108
(
5
), pp.
2197
2202
.
24.
Massi
,
F.
,
Baillet
,
L.
,
Giannini
,
O.
, and
Sestieri
,
A.
,
2007
, “
Brake Squeal: Linear and Nonlinear Numerical Approaches
,”
Mech. Syst. Signal Process
,
21
(
6
), pp.
2374
2393
.
25.
He
,
S.
,
Singh
,
R.
, and
Pavić
,
G.
,
2008
, “
Effect of Sliding Friction on Gear Noise Based on a Refined Vibro-Acoustic Formulation
,”
Noise Control Eng. J.
,
56
(
3
), pp.
164
175
.
26.
Qu
,
Y.
,
Peng
,
Z.
,
Zhang
,
W.
, and
Meng
,
G.
,
2019
, “
Nonlinear Vibro-Acoustic Behaviors of Coupled Sandwich Cylindrical Shell and Spring-Mass-Damper Systems
,”
Mech. Syst. Signal Process
,
124
, pp.
254
274
.
27.
Qu
,
Y.
,
Xie
,
F.
, and
Meng
,
G.
,
2019
, “
Nonlinear Dynamic and Acoustic Analysis of Orthogonally Stiffened Composite Laminated Cylindrical Shells Containing Piecewise Isolators
,”
J. Sound Vib.
,
456
, pp.
199
220
.
28.
Qu
,
Y.
,
Liang
,
D.
, and
Meng
,
G.
,
2020
, “
Vibration and Acoustic Waves of Multilayered Cylindrical Shells Carrying Internal Components Attached by Nonlinear Compliant Mounts
,”
Eur. J. Mech. A. Solids
,
83
, p.
104032
.
29.
Qu
,
Y.
,
Xie
,
F.
,
Su
,
H.
, and
Meng
,
G.
,
2021
, “
Numerical Analysis of Stick–Slip Induced Nonlinear Vibration and Acoustic Responses of Composite Laminated Plates With Friction Boundaries
,”
Compos. Struct.
,
258
, p.
113316
.
30.
El-Bassiouny
,
A. F.
,
2006
, “
Vibration and Chaos Control of Non-Linear Torsional Vibrating Systems
,”
Physica A
,
366
, pp.
167
186
.
31.
Karpenko
,
E. V.
,
Wiercigroch
,
M.
, and
Cartmell
,
M. P.
,
2002
, “
Regular and Chaotic Dynamics of a Discontinuously Nonlinear Rotor System
,”
Chaos Soliton Fract.
,
13
(
6
), pp.
1231
1242
.
32.
Ishida
,
Y.
, and
Inoue
,
T.
,
2004
, “
Internal Resonance Phenomena of the Jeffcott Rotor With Nonlinear Spring Characteristics
,”
ASME J. Vib. Acoust.
,
126
(
4
), pp.
476
484
.
33.
Nizioł
,
J.
, and
Świa¸toniowski
,
A.
,
2005
, “
Numerical Analysis of the Vertical Vibrations of Rolling Mills and Their Negative Effect on the Sheet Quality
,”
J. Mater. Process. Technol.
,
162–163
(SPEC. ISS.), pp.
546
550
.
34.
Shin
,
K.
,
Brennan
,
M. J.
,
Oh
,
J.-E.
, and
Harris
,
C. J.
,
2002
, “
Analysis of Disc Brake Noise Using a Two-Degree-of-Freedom Model
,”
J. Sound Vib.
,
254
(
5
), pp.
837
848
.
35.
Tam
,
C. K. W.
,
1995
, “
Computational Aeroacoustics: Issues and Methods
,”
AIAA J.
,
33
(
10
), pp.
1788
1796
.
36.
Hu
,
F. Q.
,
2001
, “
A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables
,”
J. Comput. Phys.
,
173
(
2
), pp.
455
480
.
37.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
You do not currently have access to this content.