Abstract

A theoretical and experimental investigation of a new class of a tensegrity-based structural damper is presented. The damper is not only capable of attenuating undesirable structural vibrations, as all conventional dampers, but also capable of completely blocking the transmission of vibration over specific frequency bands by virtue of its periodicity. Such dual functionality distinguishes the tensegrity damper over its counterparts of existing structural dampers. Particular emphasis is placed here in presenting the concept and developing the mathematical model of the dynamics of a unit cell the damper. The model is then coupled with a Floquet–Bloch analysis in order to identify the bandgap characteristics of the damper. The predictions of the mathematical model are validated experimentally using a prototype of the damper which is built using 3D printing. Comprehensive material characterization of the damper is performed followed by a detailed extraction of the static and dynamic behavior of the damper in order to validate the theoretical predictions. Close agreement is observed between theory and experiments. The developed theoretical and experimental techniques provide invaluable means for the design of this new class of dampers, particularly for critical structural applications.

References

1.
Fuller
,
R. B.
,
1962
, “
Tensile-Integrity Structures
,”
US Patent No. 3063521
.
2.
Pellegrino
,
S.
,
2001
,
Deployable Structures
,
Springer-Verlag
,
Wien
.
3.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer, Science + Business Media, LLC
,
New York
.
4.
Furuya
,
H.
,
1992
, “
Concept of Deployable Tensegrity Structures in Space Applications
,”
Int. J. Space Struct.
,
7
(
2
), pp.
143
151
.
5.
Liu
,
K.
,
Wu
,
J.
,
Paulino
,
G. H.
, and
Qi
,
H. J.
,
2017
, “
Programmable Deployment of “Tensegrity Structures by Stimulus Responsive Polymers
,”
Sci. Rep.
,
7
(
1
), p.
3511
.
6.
Mirats-Tur
,
J. M.
, and
Camps
,
J.
,
2011
, “
A Three-DOF Actuated Robot
,”
IEEE Rob. Autom. Mag.
,
18
(
3
), pp.
96
103
.
7.
Caluwaerts
,
K.
,
Despraz
,
J.
,
Işçen
,
A.
,
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Schrauwen
,
B.
, and
SunSpiral
,
V.
,
2014
, “
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
,”
J. R. Soc., Interface
,
11
(
98
), pp.
1
13
.
8.
Raafat
,
M. S.
,
2017
, “
Wave Propagation in Tensegrity and Periodic Structures
,”
Ph.D. dissertation
,
University of Maryland
,
College Park
.
9.
Krushynska
,
A. O.
,
Amendola
,
A.
,
Bosia
,
F.
,
Daraio
,
C.
,
Pugno
,
N. M.
, and
Fraternali
,
F.
,
2018
, “
Accordion-Like Metamaterials with Tunable Ultra-wide Low Frequency Band Gaps
,”
New J. Phys.
,
20
(
7
), p.
073051
.
10.
Amendola
,
A.
,
Krushynska
,
A.
,
Daraio
,
C.
,
Pugnod
,
N. M.
, and
Fraternalia
,
F.
,
2018
, “
Tuning Frequency Band Gaps of Tensegrity Mass-Spring Chains With Local and Global Prestress
,”
Int. J. Solids Struct.
,
155
(
1
), pp.
47
56
.
11.
Yin
,
X.
,
Zhang
,
S.
,
Xu
,
G.-K.
,
Zhang
,
L.-Y.
, and
Gao
,
Z.-Y.
,
2020
, “
Bandgap Characteristics of a Tensegrity Metamaterial Chain with Defects
,”
Extreme Mech. Lett.
,
36
(
1
), p.
100668
.
12.
Oppenheim
,
I. J.
, and
Williams
,
W. O.
,
2001
, “
Vibration and Damping in Three-Bar Tensegrity Structure
,”
J. Aerosp. Eng.
,
14
(
3
), pp.
85
91
.
13.
Zhang
,
Q.
,
Zhang
,
D.
,
Dobah
,
Y.
,
Scarpa
,
F.
,
Fraternali
,
F.
, and
Skelton
,
R. E.
,
2018
, “
Tensegrity Cell Mechanical Metamaterial With Metal Rubber
,”
Appl. Phys. Lett.
,
113
(
3
), p.
031906
.
14.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
600
.
15.
Baz
,
A.
,
2019
,
Active and Passive Vibration Damping
,
John Wiley, Inc.
,
New York, NY
.
16.
Bacquet
,
C. L.
,
Al Ba’ba’a
,
H.
,
Frazier
,
M. J.
,
Nouh
,
M.
, and
Hussein
,
M. I.
,
2018
, “
Metadamping: Dissipation Emergence in Elastic Metamaterials
,”
Adv. Appl. Mech.
,
51
Part 1(1)
, pp.
115
164
.
17.
Chen
,
Y. Y.
,
Barnharta
,
M. V.
,
Chena
,
J. K.
,
Hub
,
G. K.
,
Sunc
,
C. T.
, and
Huang
,
G. L.
,
2016
, “
Dissipative Elastic Metamaterials for Broadband Wave Mitigation at Subwavelength Scale
,”
Compos. Struct.
,
136
(
1
), pp.
358
371
.
18.
Bloch
,
F.
,
1929
, “
On the Quantum Mechanics of Electrons in Crystal Lattices
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.
19.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), pp.
979
989
.
20.
S.
Timorian
,
F.
Franco
,
M.
Ouisse
,
S.
Rosa
, and
N.
Bouhaddi
,
2020
, “
Investigation for the Analysis of the Vibrations of Quasiperiodic Structures
”, https://hal.archives-ouvertes.fr/hal-02130079/document
21.
Hussein
,
M.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2007
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
307
(
3–5
), pp.
865
893
.
22.
Aladwani
,
A.
, and
Nouh
,
M.
,
2020
, “
Mechanics of Metadamping in Flexural Dissipative Metamaterials: Analysis and Design in Frequency and Time Domains
,”
Int. J. Mech. Sci.
,
173
(
1
), p.
105459
.
23.
Mehrabi
,
M. H.
,
Suhatril
,
M.
,
Ibrahim
,
Z.
,
Ghodsi
,
S. S.
, and
Khatibi
,
H.
,
2017
, “
Modeling of a Viscoelastic Damper and Its Application in Structural Control
,”
PLoS One
,
12
(
6
), pp.
1
22
.
24.
Tchamo
,
J. M.
, and
Ying
,
Z.
,
2018
, “
An Alternative Practical Design Method for Structures With Viscoelastic Dampers
,”
Earthquake Eng. Eng. Vib.
,
17
(
3
), pp.
459
473
.
25.
Sakai
,
Y.
, and
Tanaka
,
T.
,
2020
, “
Structural Damper for Auto-damping Mechanical Components
,”
Structures
,
24
(
1
), pp.
864
868
.
26.
Park
,
S. W.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
8065
8092
.
27.
Silwal
,
B.
,
Ozbulut
,
O. E.
, and
Michael
,
R. J.
,
2017
, “
Performance Evaluation of Superelastic Viscous Dampers Considering Temperature Effects
,”
Proceedings of the 16th World Conference on Earthquake, Paper No. 2513, Registration Code: S-418974651
,
Santiago, Chile
,
Jan. 9–13
.
28.
Haghpanah
,
B.
,
Shirazi
,
A.
,
Salari-Sharif
,
L.
,
Izard
,
A. G.
, and
Valdevit
,
L.
,
2017
, “
Elastic Architected Materials With Extreme Damping Capacity
,”
Extreme Mech. Lett.
,
17
(
1
), pp.
56
61
.
29.
Dong
,
L.
, and
Lakes
,
R.
,
2013
, “
Advanced Damper With High Stiffness and High Hysteresis Damping Based on Negative Structural Stiffness
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2416
2423
.
30.
Ashby
,
H. N.
,
Evans
,
M. F.
,
Fleck
,
A.
,
Gibson
,
N. A.
,
Hutchinson
,
L. J.
, and
Wadley
,
J. W.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinmann
,
Oxford, UK
.
You do not currently have access to this content.