Abstract

This study directly addresses the problem of optimal control of a structure under the action of moving masses. The main objective is to experimentally implement and validate an active control solution for a small-scale test stand. The supporting structure is modeled as an Euler–Bernoulli simply supported beam, acted upon by moving masses of different weights and velocities. The experimental implementation of the active controller poses a particular set of challenges as compared with the numerical solutions. It is shown both numerically and experimentally that using electromagnetic actuation, a reduced order controller designed using a time-varying algorithm provides a reduction of the maximum deflection of up to 18% as compared with the uncontrolled structure. The controller performance and robustness were tested against a representative set of possible moving load parameters. In consequence of the variations in moving mass weight and speed, the controller gain requires a supplementary adaptation. A simple algorithm that schedules the gain as a function of the weight and speed of the moving mass can achieve both a good performance and an adjustment of the control effort to the specific design requirements.

References

1.
Stancioiu
,
D.
,
James
,
S.
,
Ouyang
,
H.
, and
Mottershead
,
J. E.
,
2009
, “
Vibration of a Continuous Beam Excited by a Moving Mass and Experimental Validation
,”
J. Phys. Conf. Ser.
,
181
, p.
012084
.
2.
Ouyang
,
H.
,
2011
, “
Moving-Load Dynamic Problems: A Tutorial (With a Brief Overview)
,”
Mech. Syst. Signal Process
,
25
(
6
), pp.
2039
2060
.
3.
Korkmaz
,
S.
,
2011
, “
A Review of Active Structural Control: Challenges for Engineering Informatics
,”
Comput. Struct.
,
89
(
23–24
), pp.
2113
2132
.
4.
Marcheggiani
,
L.
, and
Lenci
,
S.
,
2010
, “
On a Model for the Pedestrians-Induced Lateral Vibrations of Footbridges
,”
Meccanica
,
45
(
4
), pp.
531
551
.
5.
Yang
,
J.
,
Ouyang
,
H.
,
Stancioiu
,
D.
,
Cao
,
S.
, and
He
,
X.
,
2018
, “
Dynamic Responses of a Four-Span Continuous Plate Structure Subjected to Moving Cars With Time-Varying Speeds
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061002
.
6.
Visweswara Rao
,
G.
,
2000
, “
Linear Dynamics of an Elastic Beam Under Moving Loads
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
281
289
.
7.
Frýba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
,
Thomas Telford Publishing
,
Prague
.
8.
Younesian
,
D.
,
Kargarnovin
,
M. H.
, and
Esmailzadeh
,
E.
,
2008
, “
Optimal Passive Vibration Control of Timoshenko Beams With Arbitrary Boundary Conditions Traversed by Moving Loads
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
222
(
2
), pp.
179
188
.
9.
Shi
,
X.
, and
Cai
,
C. S.
,
2008
, “
Suppression of Vehicle-Induced Bridge Vibration Using Tuned Mass Damper
,”
J. Vib. Control
,
14
(
7
), pp.
1037
1054
.
10.
Pierson
,
H.
,
Brevick
,
J.
, and
Hubbard
,
K.
,
2013
, “
The Effect of Discrete Viscous Damping on the Transverse Vibration of Beams
,”
J. Sound Vib.
,
332
(
18
), pp.
4045
4053
.
11.
Debnath
,
N.
,
Deb
,
S.
, and
Dutta
,
A.
,
2016
, “
Multi-Modal Vibration Control of Truss Bridges With Tuned Mass Dampers Under General Loading
,”
J. Vib. Control
,
22
(
20
), pp.
4121
4140
.
12.
Adam
,
C.
,
Di Lorenzo
,
S.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2017
, “
On the Moving Load Problem in Beam Structures Equipped With Tuned Mass Dampers
,”
Meccanica
,
52
(
13
), pp.
3101
3115
.
13.
Brecher
,
C.
,
Fey
,
M.
,
Brockmann
,
B.
, and
Chavan
,
P.
,
2018
, “
Multivariable Control of Active Vibration Compensation Modules of a Portal Milling Machine
,”
J. Vib. Control
,
24
(
1
), pp.
3
17
.
14.
Balas
,
M. J.
,
1978
, “
Active Control of Flexible Systems
,”
J. Optim. Theory Appl.
,
25
(
3
), pp.
415
436
.
15.
Inman
,
D. J.
,
2006
,
Vibration With Control
,
John Wiley & Sons, Ltd.
,
Chichester, UK
.
16.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures
,
Springer Netherlands
,
Dordrecht
.
17.
Stancioiu
,
D.
, and
Ouyang
,
H.
,
2016
, “
Optimal Vibration Control of Beams Subjected to a Mass Moving at Constant Speed
,”
J. Vib. Control
,
22
(
14
), pp.
3202
3217
.
18.
Nikkhoo
,
A.
,
Rofooei
,
F. R.
, and
Shadnam
,
M. R.
,
2007
, “
Dynamic Behavior and Modal Control of Beams Under Moving Mass
,”
J. Sound Vib.
,
306
(
3–5
), pp.
712
724
.
19.
Nikkhoo
,
A.
,
2014
, “
Investigating the Behavior of Smart Thin Beams With Piezoelectric Actuators Under Dynamic Loads
,”
Mech. Syst. Signal Process
,
45
(
2
), pp.
513
530
.
20.
Sung
,
Y. G.
,
2002
, “
Modelling and Control With Piezoactuators for a Simply Supported Beam Under a Moving Mass
,”
J. Sound Vib.
,
250
(
4
), pp.
617
626
.
21.
Deng
,
F.
,
Rémond
,
D.
, and
Gaudiller
,
L.
,
2011
, “
Self-Adaptive Modal Control for Time-Varying Structures
,”
J. Sound Vib.
,
330
(
14
), pp.
3301
3315
.
22.
Naidu
,
D. S.
,
2003
,
Optimal Control Systems
,
CRC Press
,
Boca Raton, FL
.
23.
Pi
,
Y.
, and
Ouyang
,
H.
,
2016
, “
Vibration Control of Beams Subjected to a Moving Mass Using a Successively Combined Control Method
,”
Appl. Math. Model.
,
40
(
5–6
), pp.
4002
4015
.
24.
Liu
,
X.
,
Wang
,
Y.
, and
Ren
,
X.
,
2020
, “
Optimal Vibration Control of Moving-Mass Beam Systems With Uncertainty
,”
J. Low Freq. Noise Vib. Act. Control
,
39
(
3
), pp.
803
817
.
25.
Frischgesell
,
T.
,
Popp
,
K.
,
Reckmann
,
H.
, and
Schütte
,
O.
,
1998
, “
Regelung Eines Elastischen Fahrwegs Unter Verwendung Eines Variablen Beobachters (Control of an Elastic Guideway by Use of a Variable Observer)
,”
Tech. Mech.
,
18
(
1
), pp.
45
55
.
26.
Reckmann
,
H.
, and
Popp
,
K.
,
2000
, “
Deflection and Vibration Control of an Elastic Guideway Under a Moving Mass
,”
IFAC Proc. Vol.
,
33
(
26
), pp.
947
952
.
27.
Pisarski
,
D.
,
2018
, “
Optimal Control of Structures Subjected to Traveling Load
,”
J. Vib. Control
,
24
(
7
), pp.
1283
1299
.
28.
Pisarski
,
D.
, and
Myśliński
,
A.
,
2018
, “
Online Adaptive Semi-Active Vibration Damping of Slender Structures Subject to Moving Loads
,”
MATEC Web Conf.
,
148
, p.
05006
.
29.
Sievert
,
L.
,
Stancioiu
,
D.
,
Matthews
,
C.
,
Rothwell
,
G.
, and
Jenkinson
,
I.
,
2019
, “
Numerical and Experimental Investigation of Time-Varying Vibration Control for Beam Subjected to Moving Masses
,”
International Conference on Structural Engineering Dynamics, ICEDyn
,
Viana do Castelo, Portugal
,
June 24–26
, pp.
1
10
.
30.
Stancioiu
,
D.
,
Ouyang
,
H.
,
Mottershead
,
J. E.
, and
James
,
S.
,
2011
, “
Experimental Investigations of a Multi-Span Flexible Structure Subjected to Moving Masses
,”
J. Sound Vib.
,
330
(
9
), pp.
2004
2016
.
31.
Waters
,
T. P.
,
2019
, “
A Chirp Excitation for Focussing Flexural Waves
,”
J. Sound Vib.
,
439
, pp.
113
128
.
You do not currently have access to this content.