Abstract

This paper investigates the flexural wave propagation through elastically coupled telescopic metabeams. It is assumed that the metabeam is formed by connecting successive beams with each other using distributed elastic springs. The equations of motion of a representative unit of the above-mentioned novel structural form are established by dividing it into three constitutive components that are two side beams, modeled employing the Euler–Bernoulli beam equation and an elastically coupled articulated distributed spring connection (ECADSC) at middle. ECADSC is modeled as parallel double beams connected by distributed springs. The underlying mechanics of this system in context of elastic wave propagation is unique when compared with the existing state of art in which local resonators, inertial amplifiers, etc. are attached to the beam to widen the attenuation bandwidth. The dynamic stiffness matrix is employed in conjunction with Bloch–Floquet theorem to derive the band structure of the system. It is identified that the coupling coefficient of the distributed spring layer and length ratio between the side beams and the elastic coupling plays the key role in the wave attenuation. It has been perceived that a considerable widening of the attenuation bandgap in the low frequency can be achieved while the elastically distributed springs are weak and distributed in a small stretch. Specifically, 140% normalized bandgap can be obtained only by tuning the stiffness and the length ratio without adding any added masses or resonators to the structure.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Banerjee
,
A.
,
2020
, “
Non-Dimensional Analysis of the Elastic Beam Having Periodic Linear Spring Mass Resonators
,”
Meccanica
,
55
(
5
), pp.
1181
1191
.
3.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Courier Corporation
,
New York
.
4.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
5.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1d Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4
), pp.
779
806
.
6.
Lee
,
S. Y.
, and
Ke
,
H. Y.
,
1992
, “
Flexural Wave Propagation in an Elastic Beam With Periodic Structure
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S189
S196
.
7.
Hajhosseini
,
M.
,
Rafeeyan
,
M.
, and
Ebrahimi
,
S.
,
2017
, “
Vibration Band Gap Analysis of a New Periodic Beam Model Using GDQR Method
,”
Mech. Res. Commun.
,
79
(
19–20
), pp.
43
50
.
8.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021004
.
9.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
10.
Xiao
,
Y.
,
Wen
,
J.
,
Wang
,
G.
, and
Wen
,
X.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodic Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041006
.
11.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Vibration Characteristics of Metamaterial Beams With Periodic Local Resonances
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061012
.
12.
Serrano
,
Ó.
,
Zaera
,
R.
, and
Fernández-Sáez
,
J.
,
2019
, “
On the Mechanism of Bandgap Formation in Beams With Periodic Arrangement of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
064503
.
13.
Banerjee
,
A.
,
2020
, “
Influence of the Torsional Vibration of the Periodically Attached Perpendicular Beam Resonator on the Flexural Band of a Euler–Bernoulli Beam
,”
Phys. Lett. A
,
384
(
29
), p.
126757
.
14.
Sugino
,
C.
,
Xia
,
Y.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2017
, “
A General Theory for Bandgap Estimation in Locally Resonant Metastructures
,”
J. Sound Vib.
,
406
, pp.
104
123
.
15.
Yuan
,
Y.
,
Zhou
,
W.-J.
,
Li
,
J.
,
Chen
,
W.-Q.
, and
Bao
,
R.-H.
,
2019
, “
Tuning Bandgaps in Metastructured Beams: Numerical and Experimental Study
,”
J. Zhejiang Univ. Sci. A
,
20
(
11
), pp.
811
822
.
16.
Sun
,
H.
,
Du
,
X.
, and
Pai
,
P. F.
,
2010
, “
Theory of Metamaterial Beams for Broadband Vibration Absorption
,”
J. Intell. Mater. Syst. Struct.
,
21
(
11
), pp.
1085
1101
.
17.
Li
,
X.
,
Chen
,
Y.
,
Hu
,
G.
, and
Huang
,
G.
,
2018
, “
A Self-Adaptive Metamaterial Beam With Digitally Controlled Resonators for Subwavelength Broadband Flexural Wave Attenuation
,”
Smart Mater. Struct.
,
27
(
4
), p.
045015
.
18.
Hu
,
G.
,
Austin
,
A. C.
,
Sorokin
,
V.
, and
Tang
,
L.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process.
,
146
, p.
106982
.
19.
Banerjee
,
A.
,
Das
,
R.
, and
Calius
,
E. P.
,
2017
, “
Frequency Graded 1d Metamaterials: A Study on the Attenuation Bands
,”
J. Appl. Phys.
,
122
(
7
), p.
075101
.
20.
Banerjee
,
A.
,
2021
, “
Flexural Waves in Graded Metabeam Lattice
,”
Phys. Lett. A
,
388
, p.
127057
.
21.
Casalotti
,
A.
,
El-Borgi
,
S.
, and
Lacarbonara
,
W.
,
2018
, “
Metamaterial Beam With Embedded Nonlinear Vibration Absorbers
,”
Int. J. Non-Linear Mech.
,
98
, pp.
32
42
.
22.
Yilmaz
,
C.
, and
Hulbert
,
G.
,
2010
, “
Theory of Phononic Gaps Induced by Inertial Amplification in Finite Structures
,”
Phys. Lett. A
,
374
(
34
), pp.
3576
3584
.
23.
Frandsen
,
N. M.
,
Bilal
,
O. R.
,
Jensen
,
J. S.
, and
Hussein
,
M. I.
,
2016
, “
Inertial Amplification of Continuous Structures: Large Band Gaps From Small Masses
,”
J. Appl. Phys.
,
119
(
12
), p.
124902
.
24.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2015
, “
Shape Optimization of Phononic Band Gap Structures Incorporating Inertial Amplification Mechanisms
,”
J. Sound Vib.
,
355
, pp.
232
245
.
25.
Barys
,
M.
,
Jensen
,
J. S.
, and
Frandsen
,
N. M.
,
2018
, “
Efficient Attenuation of Beam Vibrations by Inertial Amplification
,”
Eur. J. Mech. A/Solids
,
71
, pp.
245
257
.
26.
Li
,
J.
, and
Li
,
S.
,
2018
, “
Generating Ultra Wide Low-Frequency Gap for Transverse Wave Isolation Via Inertial Amplification Effects
,”
Phys. Lett. A
,
382
(
5
), pp.
241
247
.
27.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2020
, “
Realization of an Ultrawide Stop Band in a 2-d Elastic Metamaterial With Topologically Optimized Inertial Amplification Mechanisms
,”
Int. J. Solids Struct.
,
203
, pp.
138
150
.
28.
Gei
,
M.
,
Bigoni
,
D.
,
Movchan
,
A.
, and
Bacca
,
M.
,
2013
, “Band-Gap Properties of Prestressed Structures,”
Acoustic Metamaterials
,
R. V.
Craster
and
S.
Geunneau
, eds.,
Springer
,
London
, pp.
61
82
.
29.
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Influence of Conicity on the Free Wave Propagation in Symmetric Tapered Periodic Beam
,”
Mech. Res. Commun.
,
111
, p.
103655
.
30.
Bergamini
,
A.
,
Miniaci
,
M.
,
Delpero
,
T.
,
Tallarico
,
D.
,
Van Damme
,
B.
,
Hannema
,
G.
,
Leibacher
,
I.
, and
Zemp
,
A.
,
2019
, “
Tacticity in Chiral Phononic Crystals
,”
Nat. Commun.
,
10
(
1
), pp.
1
8
.
31.
Miniaci
,
M.
,
Krushynska
,
A.
,
Gliozzi
,
A. S.
,
Kherraz
,
N.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2018
, “
Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials
,”
Phys. Rev. Appl.
,
10
(
2
), p.
024012
.
32.
Gupta
,
G. S.
,
1971
, “
Dynamics of Periodically Stiffened Structures Using a Wave Approach
,”
Technical Report, Southampton Univ (England) Inst of Sound and Vibration Research
.
33.
Wang
,
J.
,
Mak
,
C. M.
, and
Yun
,
Y.
,
2012
, “
A Methodology for Direct Identification of Characteristic Wave-Types in a Finite Periodic Dual-Layer Structure With Transverse Connection
,”
J. Vib. Control
,
18
(
9
), pp.
1406
1414
.
34.
Chen
,
R.
, and
Wu
,
T.
,
2016
, “
Dynamic Characteristics of a Periodic Rib-Skin Structure
,”
J. Vib. Control
,
22
(
3
), pp.
662
677
.
35.
Oniszczuk
,
Z.
,
2000
, “
Free Transverse Vibrations of Elastically Connected Simply Supported Double-Beam Complex System
,”
J. Sound Vib.
,
232
(
2
), pp.
387
403
.
36.
Palmeri
,
A.
, and
Adhikari
,
S.
,
2011
, “
A Galerkin-Type State-Space Approach for Transverse Vibrations of Slender Double-Beam Systems With Viscoelastic Inner Layer
,”
J. Sound Vib.
,
330
(
26
), pp.
6372
6386
.
37.
Seelig
,
J.
, and
Hoppmann
,
W.
,
1964
, “
Normal Mode Vibrations of Systems of Elastically Connected Parallel Bars
,”
J. Acoust. Soc. Am.
,
36
(
1
), pp.
93
99
.
38.
Hussein
,
M.
, and
Hunt
,
H.
,
2006
, “
Modelling of Floating-Slab Tracks With Continuous Slabs Under Oscillating Moving Loads
,”
J. Sound Vib.
,
297
(
1–2
), pp.
37
54
.
39.
Şimşek
,
M.
,
2011
, “
Nonlocal Effects in the Forced Vibration of an Elastically Connected Double-Carbon Nanotube System Under a Moving Nanoparticle
,”
Comput. Mater. Sci.
,
50
(
7
), pp.
2112
2123
.
40.
Hajarolasvadi
,
S.
, and
Elbanna
,
A. E.
,
2019
, “
Dynamics of Metamaterial Beams Consisting of Periodically-Coupled Parallel Flexural Elements: A Theoretical Study
,”
J. Phys. D: Appl. Phys.
,
52
(
31
), p.
315101
.
41.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill Companies
,
New York
.
42.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
John Wiley & Sons
,
Clementi Loop, Singapore
.
43.
Cook
,
R. D.
,
1995
,
Finite Element Modeling for Stress Analysis
,
John Wiley & Sons
,
New York
.
44.
Lin
,
W.-W.
,
1987
, “
A New Method for Computing the Closed-Loop Eigenvalues of a Discrete-Time Algebraic Riccati Equation
,”
Linear Algebra Appl.
,
96
, pp.
157
180
.
45.
Vu
,
H.
,
Ordonez
,
A.
, and
Karnopp
,
B.
,
2000
, “
Vibration of a Double-Beam System
,”
J. Sound Vib.
,
229
(
4
), pp.
807
822
.
You do not currently have access to this content.