Abstract

A new computationally efficient error adaptive first-order eigen-perturbation technique for real-time modal identification of linear vibrating systems is proposed. The existence of error terms in the approximation of the eigenvalue problem of response covariance matrix in a perturbative framework often hinders the convergence of response-only modal identification. In the proposed method, the error in first-order eigen-perturbation is incorporated using a feedback, formulated by exploiting the generalized eigenvalue decomposition of the real-time covariance matrix of streaming response data. Since the incorporation of the higher-order perturbation terms in the total perturbation is mathematically challenging, the proposed feedback approach provides a computationally efficient framework yet in a more elegant manner. A new criterion for the quality of updated eigenspace is proposed in the present work utilizing the concept of diagonal dominance. Numerical case studies and validation using a standard ASCE benchmark problem have shown applicability of the proposed approach in faster estimation of real-time modal properties and anomaly identification with minimal number of initially required batch data. The applicability of the proposed approach toward real-time under-determined modal identification problems is demonstrated using a real-time decentralized framework. The advantage of rapidly converging online mode-shapes is demonstrated using a passive vibration control problem, where a multi-tuned-mass-damper (MTMD) for a multi-degrees-of-freedom system is tuned online. An extension for online retuning of the detuned MTMD system further demonstrates the fidelity of the proposed algorithm in online passive control.

References

References
1.
Antoni
,
J.
, and
Chauhan
,
S.
,
2013
, “
A Study and Extension of Second-Order Blind Source Separation to Operational Modal Analysis
,”
J. Sound. Vib.
,
332
(
4
), pp.
1079
1106
. 10.1016/j.jsv.2012.09.016
2.
Brincker
,
R.
, and
Ventura
,
C.
,
2015
,
Introduction to Operational Modal Analysis
,
Wiley & Sons
,
Chichester, West Sussex
.
3.
Liu
,
W.
,
Gao
,
W.-c.
, and
Sun
,
Y.
,
2009
, “
Application of Modal Identification Methods to Spatial Structure Using Field Measurement Data
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
034503
. 10.1115/1.3085881
4.
Hazra
,
B.
,
Roffel
,
A.
,
Narasimhan
,
S.
, and
Pandey
,
M.
,
2010
, “
Modified Cross-Correlation Method for the Blind Identification of Structures
,”
J. Eng. Mech.
,
136
(
7
), pp.
889
897
. 10.1061/(ASCE)EM.1943-7889.0000133
5.
Ceravolo
,
R.
, and
Abbiati
,
G.
,
2013
, “
Time Domain Identification of Structures: Comparative Analysis of Output-Only Methods
,”
J. Eng. Mech.
,
139
(
4
), pp.
537
544
. 10.1061/(ASCE)EM.1943-7889.0000503
6.
Caldwell
,
R. A.
, and
Feeny
,
B. F.
,
2014
, “
Output-Only Modal Identification of a Nonuniform Beam by Using Decomposition Methods
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041010
. 10.1115/1.4027243
7.
Hu
,
Z.-X.
,
Huang
,
X.
,
Wang
,
Y.
, and
Wang
,
F.
,
2018
, “
Extended Smooth Orthogonal Decomposition for Modal Analysis
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041008
. 10.1115/1.4039240
8.
Allen
,
M. S.
,
Sracic
,
M. W.
,
Chauhan
,
S.
, and
Hansen
,
M. H.
,
2011
, “
Output-Only Modal Analysis of Linear Time-Periodic Systems With Application to Wind Turbine Simulation Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1174
1191
. 10.1016/j.ymssp.2010.12.018
9.
Pakrashi
,
V.
,
O’Connor
,
A.
, and
Basu
,
B.
,
2010
, “
A Bridge-Vehicle Interaction Based Experimental Investigation of Damage Evolution
,”
Struct. Health. Monit.
,
9
(
4
), pp.
285
296
. 10.1177/1475921709352147
10.
Roffel
,
A.
,
Lourenco
,
R.
,
Narasimhan
,
S.
, and
Yarusevych
,
S.
,
2010
, “
Adaptive Compensation for Detuning in Pendulum Tuned Mass Dampers
,”
J.Struct. Eng.
,
137
(
2
), pp.
242
251
. 10.1061/(ASCE)ST.1943-541X.0000286
11.
Quqa
,
S.
,
Landi
,
L.
, and
Diotallevi
,
P. P.
,
2020
, “
Instantaneous Modal Identification Under Varying Structural Characteristics: A Decentralized Algorithm
,”
Mecha. Syst. Signal Process.
,
142
, p.
106750
. 10.1016/j.ymssp.2020.106750
12.
Chatzi
,
E. N.
, and
Smyth
,
A. W.
,
2009
, “
The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification With Non-Collocated Heterogeneous Sensing
,”
Struct. Control Health Monitoring
,
16
(
1
), pp.
99
123
. 10.1002/stc.290
13.
Khanam
,
S.
,
Dutt
,
J.
, and
Tandon
,
N.
,
2014
, “
Extracting Rolling Element Bearing Faults From Noisy Vibration Signal Using Kalman Filter
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031008
. 10.1115/1.4026946
14.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2019
, “
First-Order Eigen-Perturbation Techniques for Real-Time Damage Detection of Vibrating Systems: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
71
(
6
), p.
060801
. 10.1115/1.4044287
15.
Hassanabadi
,
M. E.
,
Heidarpour
,
A.
,
Azam
,
S. E.
, and
Arashpour
,
M.
,
2020
, “
Recursive Principal Component Analysis for Model Order Reduction With Application in Nonlinear Bayesian Filtering
,”
Comput. Methods Appl. Mech. Eng.
,
371
, p.
113334
. 10.1016/j.cma.2020.113334
16.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2020
, “
Real Time Structural Modal Identification Using Recursive Canonical Correlation Analysis and Application Towards Online Structural Damage Detection
,”
J. Sound. Vib.
,
468
, p.
115101
. 10.1016/j.jsv.2019.115101
17.
Amini
,
F.
, and
Ghasemi
,
V.
,
2018
, “
Adaptive Modal Identification of Structures With Equivariant Adaptive Separation Via Independence Approach
,”
J. Sound. Vib.
,
413
, pp.
66
78
. 10.1016/j.jsv.2017.09.033
18.
Sadhu
,
A.
,
Hazra
,
B.
, and
Narasimhan
,
S.
,
2013
, “
Decentralized Modal Identification of Structures Using Parallel Factor Decomposition and Sparse Blind Source Separation
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
396
419
. 10.1016/j.ymssp.2013.06.031
19.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
, Vol.
3
,
JHU Press
,
Baltimore, MD
.
20.
Kato
,
T.
,
2013
,
Perturbation Theory for Linear Operators
, Vol.
132
,
Springer Science & Business Media
,
New York
.
21.
Zhou
,
W.
, and
Chelidze
,
D.
,
2008
, “
Generalized Eigenvalue Decomposition in Time Domain Modal Parameter Identification
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011001
. 10.1115/1.2775509
22.
Stewart
,
G. W.
,
1973
, “
Error and Perturbation Bounds for Subspaces Associated With Certain Eigenvalue Problems
,”
SIAM Rev.
,
15
(
4
), pp.
727
764
. 10.1137/1015095
23.
Rana
,
R.
, and
Soong
,
T.
,
1998
, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
,
20
(
3
), pp.
193
204
. 10.1016/S0141-0296(97)00078-3
You do not currently have access to this content.