Abstract

This work investigates the effect of elastic support stiffness on the accuracy of moving load identification of Euler–Bernoulli beams. It uses the angular velocity response in solving the ill-posed inverse vibration problem and Tikhonov regularization in the load identification process of two moving loads. The effects from moving loads’ traveling direction, measurement location arrangements, number of participant measurements, and damping ratios are considered in the studies under noisy disturbance conditions. Results show that the stiffness of the translational rotational springs at the boundaries can impact the accuracy of identified moving loads considerably. Angular velocities presented much better results than accelerations under low stiffness conditions when vertical elastic supports were used. However, acceleration showed better performance when a very soft translational spring was used at one end and a much stiffer translational spring at the other end, as well as when rotational springs with large stiffness were used with simply supported beam conditions. The combination of angular velocities and accelerations provided a balanced solution for a wide range of elastic supports with different stiffnesses.

References

References
1.
Frýba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
,
Thomas Telford
,
London
.
2.
Yang
,
Y. B.
,
Wu
,
Y. S.
, and
Yao
,
Z.
,
2004
,
Vehicle–Bridge Interaction Dynamics With Applications to High-Speed Railways
,
World Scientific
,
London
.
3.
Law
,
S. S.
,
Chan
,
T. H.
, and
Zeng
,
Q.
,
1997
, “
Moving Force Identification: A Time Domain Method
,”
J. Sound Vib.
,
201
(
1
), pp.
1
22
. 10.1006/jsvi.1996.0774
4.
Zhu
,
X.
, and
Law
,
S. S.
,
2002
, “
Moving Loads Identification Through Regularization
,”
J. Eng. Mech.
,
128
(
9
), pp.
989
1000
. 10.1061/(ASCE)0733-9399(2002)128:9(989)
5.
Law
,
S. S.
,
Chan
,
T. H.
, and
Zeng
,
Q.
,
1999
, “
Moving Force Identification—A Frequency and Time Domains Analysis
,”
J. Dyn. Syst. Meas. Control
,
121
(
3
), pp.
394
402
. 10.1115/1.2802487
6.
Law
,
S. S.
, and
Zhu
,
X.-Q.
,
2011
,
Moving Loads-Dynamic Analysis and Identification Techniques (Structures and Infrastructures Book Series, Vol. 8)
,
CRC Press
,
London
.
7.
Karbhari
,
V. M.
, and
Ansari
,
F.
,
2009
,
Structural Health Monitoring of Civil Infrastructure Systems
,
Woodhead Publishing
,
Cambridge
.
8.
Rao
,
S. S.
,
2019
,
Vibration of Continuous Systems
,
John Wiley & Sons
,
New York
.
9.
Qiao
,
G.
, and
Rahmatalla
,
S.
,
2019
, “
Identification of the Viscoelastic Boundary Conditions of Euler–Bernoulli Beams Using Transmissibility
,”
Eng. Rep.
,
1
(
5
), p.
e12074
. 10.1002/eng2.12074
10.
Qiao
,
G.
, and
Rahmatalla
,
S.
,
2020
, “
Dynamics of Euler–Bernoulli Beams With Unknown Viscoelastic Boundary Conditions Under a Moving Load
,”
J. Sound Vib.
, p.
115771
. 10.1016/j.jsv.2020.115771
11.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M.
, and
Da Costa
,
A. P.
,
2018
, “
Dynamics of a Beam on a Bilinear Elastic Foundation Under Harmonic Moving Load
,”
Acta Mech.
,
229
(
10
), pp.
4141
4165
. 10.1007/s00707-018-2213-4
12.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M.
, and
Da Costa
,
A. P.
,
2018
, “
Universal Analytical Solution of the Steady-State Response of an Infinite Beam on a Pasternak Elastic Foundation Under Moving Load
,”
Int. J. Solids Struct.
,
132
, pp.
245
263
. 10.1016/j.ijsolstr.2017.10.005
13.
Dimitrovová
,
Z.
,
2016
, “
Critical Velocity of a Uniformly Moving Load on a Beam Supported by a Finite Depth Foundation
,”
J. Sound Vib.
,
366
, pp.
325
342
. 10.1016/j.jsv.2015.12.023
14.
Mazilu
,
T.
,
2017
, “
The Dynamics of an Infinite Uniform Euler–Bernoulli Beam on Bilinear Viscoelastic Foundation Under Moving Loads
,”
Procedia Eng.
,
199
, pp.
2561
2566
. 10.1016/j.proeng.2017.09.327
15.
Chan
,
T. H.
, and
Ashebo
,
D. B.
,
2006
, “
Theoretical Study of Moving Force Identification on Continuous Bridges
,”
J. Sound Vib.
,
295
(
3–5
), pp.
870
883
. 10.1016/j.jsv.2006.01.059
16.
Zhu
,
X.
, and
Law
,
S.
,
2006
, “
Moving Load Identification on Multi-Span Continuous Bridges With Elastic Bearings
,”
Mech. Syst. Sig. Process.
,
20
(
7
), pp.
1759
1782
. 10.1016/j.ymssp.2005.06.004
17.
Qiao
,
G.
, and
Rahmatalla
,
S.
,
2020
, “
Moving Load Identification on Euler–Bernoulli Beams With Viscoelastic Boundary Conditions by Tikhonov Regularization
,”
Inverse Probl. Sci. Eng.
, pp.
1
38
. 10.1080/17415977.2020.1817916
18.
Chen
,
J.
, and
Li
,
J.
,
2004
, “
Simultaneous Identification of Structural Parameters and Input Time History From Output-Only Measurements
,”
Comput. Mech.
,
33
(
5
), pp.
365
374
. 10.1007/s00466-003-0538-9
19.
Pioldi
,
F.
, and
Rizzi
,
E.
,
2016
, “
A Full Dynamic Compound Inverse Method for Output-Only Element-Level System Identification and Input Estimation From Earthquake Response Signals
,”
Comput. Mech.
,
58
(
2
), pp.
307
327
. 10.1007/s00466-016-1292-0
20.
Froio
,
D.
,
Rizzi
,
E.
,
Simões
,
F. M.
, and
da Costa
,
A. P.
,
2020
, “
A True PML Approach for Steady-State Vibration Analysis of an Elastically Supported Beam Under Moving Load by a DLSFEM Formulation
,”
Comput. Struct.
,
239
, p.
106295
. 10.1016/j.compstruc.2020.106295
21.
Inoue
,
H.
,
Kishimoto
,
K.
,
Shibuya
,
T.
, and
Harada
,
K.
,
1998
, “
Regularization of Numerical Inversion of the Laplace Transform for the Inverse Analysis of Impact Force
,”
JSME Int. J. Ser. A Solid Mech. Mater. Eng.
,
41
(
4
), pp.
473
480
. 10.1299/jsmea.41.473
22.
Jacquelin
,
E.
,
Bennani
,
A.
, and
Hamelin
,
P.
,
2003
, “
Force Reconstruction: Analysis and Regularization of a Deconvolution Problem
,”
J. Sound Vib.
,
265
(
1
), pp.
81
107
. 10.1016/S0022-460X(02)01441-4
23.
Choi
,
H.
,
Thite
,
A. N.
, and
Thompson
,
D. J.
,
2006
, “
A Threshold for the Use of Tikhonov Regularization in Inverse Force Determination
,”
Appl. Acoust.
,
67
(
7
), pp.
700
719
. 10.1016/j.apacoust.2005.11.003
24.
Choi
,
H. G.
,
Thite
,
A. N.
, and
Thompson
,
D. J.
,
2007
, “
Comparison of Methods for Parameter Selection in Tikhonov Regularization With Application to Inverse Force Determination
,”
J. Sound Vib.
,
304
(
3–5
), pp.
894
917
. 10.1016/j.jsv.2007.03.040
25.
Mao
,
Y.
,
Guo
,
X.
, and
Zhao
,
Y.
,
2010
, “
A State Space Force Identification Method Based on Markov Parameters Precise Computation and Regularization Technique
,”
J. Sound Vib.
,
329
(
15
), pp.
3008
3019
. 10.1016/j.jsv.2010.02.012
26.
Ding
,
Y.
,
Law
,
S. S.
,
Wu
,
B.
,
Xu
,
G. S.
,
Lin
,
Q.
,
Jiang
,
H. B.
, and
Miao
,
Q. S.
,
2013
, “
Average Acceleration Discrete Algorithm for Force Identification in State Space
,”
Eng. Struct.
,
56
, pp.
1880
1892
. 10.1016/j.engstruct.2013.08.004
27.
González
,
A.
,
Rowley
,
C.
, and
O’Brien
,
E. J.
,
2008
, “
A General Solution to the Identification of Moving Vehicle Forces on a Bridge
,”
Int. J. Numer. Methods Eng.
,
75
(
3
), pp.
335
354
. 10.1002/nme.2262
28.
Asnachinda
,
P.
,
Pinkaew
,
T.
, and
Laman
,
J. A.
,
2008
, “
Multiple Vehicle Axle Load Identification From Continuous Bridge Bending Moment Response
,”
Eng. Struct.
,
30
(
10
), pp.
2800
2817
. 10.1016/j.engstruct.2008.02.018
29.
Clough
,
R. W.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
30.
Hansen
,
P. C.
,
2007
, “
Regularization Tools Version 4.0 for Matlab 7.3
,”
Numer. Algorithms
,
46
(
2
), pp.
189
194
. 10.1007/s11075-007-9136-9
31.
Phillips
,
D. L.
,
1962
, “
A Technique for the Numerical Solution of Certain Integral Equations of the First Kind
,”
J. ACM
,
9
(
1
), pp.
84
97
. 10.1145/321105.321114
32.
Tikhonov
,
A. N.
, and
Arsenin
,
V. I. A.
,
1977
,
Solutions of Ill-Posed Problems
,
Winston & Sons
,
New York
.
33.
Wahba
,
G.
,
1990
,
Spline Models for Observational Data (CBMS-NSF Regional Conference Series in Applied Mathematics, 59)
,
SIAM
,
Philadelphia, PA
.
34.
ISO
,
2016
,
8608: 2016 Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data
,
BSI Standards Publication
,
London
.
35.
Van Loan
,
C. F.
,
1976
, “
Generalizing the Singular Value Decomposition
,”
SIAM J. Numer. Anal.
,
13
(
1
), pp.
76
83
. 10.1137/0713009
36.
Hansen
,
P. C.
,
1989
, “
Regularization, GSVD and Truncated GSVD
,”
BIT Numer. Math.
,
29
(
3
), pp.
491
504
. 10.1007/BF02219234
37.
Rao
,
C. K.
, and
Mirza
,
S.
,
1989
, “
A Note on Vibrations of Generally Restrained Beams
,”
J. Sound Vib.
,
130
(
3
), pp.
453
465
. 10.1016/0022-460X(89)90069-2
38.
Register
,
A.
,
1994
, “
A Note on the Vibrations of Generally Restrained, End-Loaded Beams
,”
J. Sound Vib.
,
172
(
4
), pp.
561
571
. 10.1006/jsvi.1994.1198
39.
Kang
,
K.
, and
Kim
,
K.-J.
,
1996
, “
Modal Properties of Beams and Plates on Resilient Supports With Rotational and Translational Complex Stiffness
,”
J. Sound Vib.
,
190
(
2
), pp.
207
220
. 10.1006/jsvi.1996.0057
40.
Li
,
W. L.
,
2000
, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
,
237
(
4
), pp.
709
725
. 10.1006/jsvi.2000.3150
You do not currently have access to this content.