Abstract

The development of reduced-order models remains an active research area, despite advances in computational resources. The present work develops a novel order-reduction approach that is designed to incorporate isolated regions that contain, for example, nonlinearitites or accumulating damage. The approach is designed to use global modes of the overall system response, which are then naturally coupled to the response in the isolated region of interest. Two examples are provided to demonstrate both the accuracy and the computational efficiency of the proposed approach. The performance of this approach is compared to the exact response corresponding to a finite element simulation for the chosen problems. In addition, the accuracy and computational efficiency are shown relative to a standard Galerkin reduction based on the linear normal modes. It is found that the proposed reduction offer computational efficiency comparable to a Galerkin reduction, but more accurately represents the response of the system when both are compared to the finite element simulation.

References

References
1.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
. 10.2514/3.2947
2.
Craig.
,
R. R.
, and
Bampton, Jr
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1311
1319
. 10.2514/3.4741
3.
Craig, Jr
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
. 2nd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
4.
Farhat
,
C.
, and
Geradin
,
M.
,
1994
, “
On a Component Mode Synthesis Method and Its Application to Incompatible Substructures
,”
Comput. Struct.
,
51
(
5
), pp.
459
473
. 10.1016/0045-7949(94)90053-1
5.
Brake
,
M. R. W.
, editor,
2018
,
The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics
,
Springer
,
Cham, Switzerland
.
6.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1
), pp.
169
181
. 10.1007/BF01177306
7.
Khattak
,
A. R.
,
Garvey
,
S.
, and
Popov
,
A.
,
2010
, “
Proper Orthogonal Decomposition of the Dynamics in Bolted Joints
,”
J. Sound. Vib.
,
329
, pp.
1480
1498
. 10.1016/j.jsv.2009.11.016
8.
Festjens
,
H.
,
Chevallier
,
G.
, and
Dion
,
J. L.
,
2014
, “
Nonlinear Model Order Reduction of Jointed Structures for Dynamic Analysis
,”
J. Sound. Vib.
,
333
, pp.
2100
2113
. 10.1016/j.jsv.2013.11.039
9.
Roettgen
,
D. R.
, and
Allen
,
M. S.
,
2017
, “
Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework
,”
Mech. Syst. Signal Proc.
,
84
, pp.
152
170
. 10.1016/j.ymssp.2015.11.010
10.
Lacayo
,
R. M.
, and
Allen
,
M. S.
,
2019
, “
Updating Structural Models Containing Nonlinear Iwan Joints Using Quasi-static Modal Analysis
,”
Mech. Syst. Signal Proc.
,
118
, pp.
133
157
. 10.1016/j.ymssp.2018.08.034
11.
Segalman
,
D. J.
,
A modal approach to modeling spatially distributed vibration energy dissipation
.
Technical Report SAND2010–4763
,
Sandia National Laboratories
,
August
2010
.
12.
Segalman
,
D. J.
,
2006
, “
Modelling Joint Friction in Structural Dynamics
,”
Struct. Control Health Monitoring
,
13
, pp.
430
453
. 10.1002/stc.119
13.
Segalman
,
D. J.
,
2007
, “
Model Reduction of Systems With Localized Nonlinearities
,”
ASME J. Comput. Nonlinear. Dyn.
,
2
(
3
), pp.
249
266
. 10.1115/1.2727495
14.
Quinn
,
D. D.
,
2012
, “
Modal Analysis of Jointed Structures
,”
J. Sound. Vib.
,
331
(
1
), pp.
81
93
. 10.1016/j.jsv.2011.08.017
15.
Miller
,
J. D.
, and
Quinn
,
D. D.
,
2009
, “
A Two-sided Interface Model for Dissipation in Structural Systems With Frictional Joints
,”
J. Sound. Vib.
,
321
(
1–2
), pp.
201
219
. 10.1016/j.jsv.2008.09.037
16.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
. 10.1137/130932715
17.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound. Vib.
,
211
(
4
), pp.
607
616
. 10.1006/jsvi.1997.1386
18.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
19.
Kerschen
,
G.
,
Golinval
,
J.-C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn. Vol.
,
41
, pp.
147
169
. 10.1007/s11071-005-2803-2
20.
Mathis
,
A. T.
,
Balaji
,
N. N.
,
Kuether
,
R. J.
,
Brink
,
A. R.
,
Brake
,
M. R. W.
, and
Quinn
,
D. D.
,
2020
, “
A Review of Damping Models for Structures with Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
72
, p.
040802
. 10.1115/1.4047707
21.
Leine
,
R.
, and
Nijmeijer
,
H.
,
2014
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
.
Lecture Notes in Applied and Computational Mechanics
.
Springer
Berlin, Heidelberg
,
ISBN 9783642535796
.
You do not currently have access to this content.