Abstract

Reduced order models (ROMs) can be simulated with lower computational cost while being more amenable to theoretical analysis. Here, we examine the performance of the proper orthogonal decomposition (POD), a data-driven model reduction technique. We show that the accuracy of ROMs obtained using POD depends on the type of data used and, more crucially, on the criterion used to select the number of proper orthogonal modes (POMs) used for the model. Simulations of a simply supported Euler–Bernoulli beam subjected to periodic impulsive loads are used to generate ROMs via POD, which are then simulated for comparison with the full system. We assess the accuracy of ROMs obtained using steady-state displacement, velocity, and strain fields, tuning the spatiotemporal localization of applied impulses to control the number of excited modes in, and hence the dimensionality of, the system’s response. We show that conventional variance-based mode selection leads to inaccurate models for sufficiently impulsive loading and that this poor performance is explained by the energy imbalance on the reduced subspace. Specifically, the subspace of POMs capturing a fixed amount (say, 99.9%) of the total variance underestimates the energy input and dissipated in the ROM, yielding inaccurate reduced-order simulations. This problem becomes more acute as the loading becomes more spatio-temporally localized (more impulsive). Thus, energy closure analysis provides an improved method for generating ROMs with energetics that properly reflect that of the full system, resulting in simulations that accurately represent the system’s true behavior.

References

1.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Quart. Appl. Math.
,
45
(
3
), pp.
561
571
. 10.1090/qam/910462
2.
Sirovich
,
L.
,
1989
, “
Chaotic Dynamics of Coherent Structures
,”
Physica D: Nonlinear Phenomena
,
37
(
1
), pp.
126
145
. 10.1016/0167-2789(89)90123-1
3.
Holmes
,
P.
,
Berkooz
,
G.
, and
Lumley
,
J. L.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
4.
Bergmann
,
M.
,
2017
, “
A Hybrid DNS/ROM Approach for Wind and Ocean Wave Energy Converters
,”
MECASIF Workshop 2017—MECASIF on Reduced Order Methods for Wind and Marine Current Power
,
Sophia Antipolis, France.
5.
Kammerer
,
A. J.
, and
Hackett
,
E. E.
,
2017
, “
Use of Proper Orthogonal Decomposition for Extraction of Ocean Surface Wave Fields From X-band Radar Measurements of the Sea Surface
,”
Remote Sens.
,
9
(
9
), p.
881
. 10.3390/rs9090881
6.
Solari
,
G.
,
Carassale
,
L.
, and
Tubino
,
F.
,
2007
, “
Proper Orthogonal Decomposition in Wind Engineering. Part 1: A State-of-the-Art and Some Prospects
,”
Wind Struct.
,
10
(
2
), pp.
153
176
. 10.12989/was.2007.10.2.153
7.
Carassale
,
L.
,
Solari
,
G.
, and
Tubino
,
F.
,
2007
, “
Proper Orthogonal Decomposition in Wind Engineering. Part 2: Theoretical Aspects and Some Applications
,”
Wind Struct.
,
10
(
2
), pp.
177
208
. 10.12989/was.2007.10.2.177
8.
Aa
,
E.
,
Ridley
,
A.
,
Huang
,
W.
,
Zou
,
S.
,
Liu
,
S.
,
Coster
,
A. J.
, and
Zhang
,
S.
,
2018
, “
An Ionosphere Specification Technique Based on Data Ingestion Algorithm and Empirical Orthogonal Function Analysis Method
,”
Space Weather
,
16
(
9
), pp.
1410
1423
. 10.1029/2018SW001987
9.
Tatli
,
H.
, and
Türkeş
,
M.
,
2011
, “
Empirical Orthogonal Function Analysis of the Palmer Drought Indices
,”
Agric. For. Meteorol.
,
151
(
7
), pp.
981
991
. 10.1016/j.agrformet.2011.03.004
10.
Ravindran
,
S. S.
,
2000
, “
A Reduced-Order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition
,”
Int. J. Numerical Methods Fluids
,
34
(
5
), pp.
425
448
. 10.1002/1097-0363(20001115)34:5<425::AID-FLD67<3.0.CO;2-W
11.
Kunisch
,
K.
, and
Volkwein
,
S.
,
2008
, “
Proper Orthogonal Decomposition for Optimality Systems
,”
ESAIM: Math. Model. Numer. Anal. Modélisation Math. Anal. Numér.
,
42
(
1
), pp.
1
23
. 10.1051/m2an:2007054
12.
El Moçayd
,
N.
,
Mohamed
,
M. S.
,
Ouazar
,
D.
, and
Seaid
,
M.
,
2020
, “
Stochastic Model Reduction for Polynomial Chaos Expansion of Acoustic Waves Using Proper Orthogonal Decomposition
,”
Reliab. Engin. Syst. Safety
,
195
, Article No. 106733. 10.1016/j.ress.2019.106733
13.
Balasubramanian
,
M.
,
Zabic
,
S.
,
Bowd
,
C.
,
Thompson
,
H. W.
,
Wolenski
,
P.
,
Iyengar
,
S. S.
,
Karki
,
B. B.
, and
Zangwill
,
L. M.
,
2009
, “
A Framework for Detecting Glaucomatous Progression in the Optic Nerve Head of An Eye Using Proper Orthogonal Decomposition
,”
IEEE Trans. Infor. Technol. Biomed.
,
13
(
5
), pp.
781
793
. 10.1109/TITB.2009.2020158
14.
Kellems
,
A. R.
,
Chaturantabut
,
S.
,
Sorensen
,
D. C.
, and
Cox
,
S. J.
,
2010
, “
Morphologically Accurate Reduced Order Modeling of Spiking Neurons
,”
J. Comput. Neurosci.
,
28
(
3
), pp.
477
494
. 10.1007/s10827-010-0229-4
15.
Ting
,
Z.
, and
Hui
,
J.
,
2012
, “
EEG Signal Processing Based on Proper Orthogonal Decomposition
,”
2012 International Conference on Audio, Language and Image Processing
,
Shanghai, China
,
July 16–18
,
IEEE
.
16.
Shlizerman
,
E.
,
Ding
,
E.
,
Williams
,
M. O.
, and
Kutz
,
J. N.
,
2012
, “
The Proper Orthogonal Decomposition for Dimensionality Reduction in Mode-Locked Lasers and Optical Systems
,”
Int. J. Optics
,
2012
, pp.
1
18
. 10.1155/2012/831604
17.
Cusumano
,
J. P.
, and
Bai
,
B. Y.
,
1993
, “
Period-infinity Periodic Motions, Chaos, and Spatial Coherence in a 10 deg of Freedom Impact Oscillator
,”
Chaos, Solitons Fractals
,
3
(
5
), pp.
515
535
. 10.1016/0960-0779(93)90003-J
18.
Cusumano
,
J. P.
,
Sharkady
,
M. T.
, and
Kimble
,
B. W.
,
1994
, “
Experimental Measurements of Dimensionality and Spatial Coherence in the Dynamics of a Flexible-Beam Impact Oscillator
,”
Philos. Trans. Phys. Sci. Engin.
,
347
(
1683
), pp.
421
438
. https://doi.org/10.1098/rsta.1994.0052
19.
Han
,
S.
, and
Feeny
,
B.
,
2003
, “
Application of Proper Orthogonal Decomposition to Structural Vibration Analysis
,”
Mech. Syst. Signal Process.
,
17
(
5
), pp.
989
1001
. 10.1006/mssp.2002.1570
20.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound. Vib.
,
211
(
4
), pp.
607
616
. 10.1006/jsvi.1997.1386
21.
Kappagantu
,
R.
, and
Feeny
,
B. F.
,
1999
, “
An ‘optimal’ Modal Reduction of a System with Frictional Excitation
,”
J. Sound. Vib.
,
224
(
5
), pp.
863
877
. 10.1006/jsvi.1999.2165
22.
Azeez
,
M.
, and
Vakakis
,
A.
,
2001
, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations
,”
J. Sound. Vib.
,
240
(
5
), pp.
859
889
. 10.1006/jsvi.2000.3264
23.
Wolter
,
C.
,
Trindade
,
M.
, and
Sampaio
,
R.
,
2002
, “
Reduced-Order Model for An Impacting Beam Using the Karhunen-Loéve Expansion
,”
TEMA - Tendências em Matemática Aplicada e Computacional
,
3
(
2
). https://doi.org/10.5540/tema.2002.03.02.0217
24.
Amabili
,
M.
,
Sarkar
,
A.
, and
Païdoussis
,
M.
,
2006
, “
Chaotic Vibrations of Circular Cylindrical Shells: Galerkin Versus Reduced-Order Models Via the Proper Orthogonal Decomposition Method
,”
J. Sound. Vib.
,
290
(
3-5
), pp.
736
762
. 10.1016/j.jsv.2005.04.034
25.
Amabili
,
M.
, and
Touzé
,
C.
,
2007
, “
Reduced-order Models for Nonlinear Vibrations of Fluid-filled Circular Cylindrical Shells: Comparison of POD and Asymptotic Nonlinear Normal Modes Methods
,”
J. Fluids Struct.
,
23
(
6
), pp.
885
903
. 10.1016/j.jfluidstructs.2006.12.004
26.
Ritto
,
T. G.
,
Buezas
,
F. S.
, and
Sampaio
,
R.
,
2012
, “
Proper Orthogonal Decomposition for Model Reduction of a Vibroimpact System
,”
J. Brazilian Soc. Mech. Sci. Engin.
,
34
(
3
), pp.
330
340
. 10.1590/S1678-58782012000300013
27.
Eftekhar Azam
,
S.
, and
Mariani
,
S.
,
2013
, “
Investigation of Computational and Accuracy Issues in POD-based Reduced Order Modeling of Dynamic Structural Systems
,”
Engin. Struct.
,
54
, pp.
150
167
. 10.1016/j.engstruct.2013.04.004
28.
Kreuzer
,
E.
, and
Kust
,
O.
,
1996
, “
Analysis of Long Torsional Strings by Proper Orthogonal Decomposition
,”
Archive Appl. Mech.
,
67
(
1
), pp.
68
80
. 10.1007/BF00787141
29.
Georgiou
,
I. T.
, and
Schwartz
,
I. B.
,
1999
, “
Dynamics of Large Scale Coupled Structural/Mechanical Systems: A Singular Perturbation/proper Orthogonal Decomposition Approach
,”
SIAM J. Appl. Math.
,
59
(
4
), pp.
1178
1207
. 10.1137/S0036139997299802
30.
Kerschen
,
G.
,
2002
, “
On the Model Validation in Nonlinear Structural Dynamics
,”
PhD dissertation
,
Université de Liège
,
Liège, Belgium
.
31.
Segala
,
D. B.
, and
Naseradinmousavi
,
P.
,
2017
, “
On the Inclusion of Time Derivatives of State Variables for Parametric Model Order Reduction for a Beam on a Nonlinear Foundation
,”
ASME J. Dyn. Syst. Meas. Control.
,
139
(
8
), p.
081009
. 10.1115/1.4035759
32.
Rathinam
,
M.
, and
Petzold
,
L. R.
,
2003
, “
A New Look At Proper Orthogonal Decomposition
,”
SIAM J. Numer. Anal. Philadelphia
,
41
(
5
), pp.
1893
1925
. 10.1137/S0036142901389049
33.
Ilbeigi
,
S.
, and
Chelidze
,
D.
,
2017
, “
Persistent Model Order Reduction for Complex Dynamical Systems Using Smooth Orthogonal Decomposition
,”
Mech. Syst. Signal Process.
,
96
, pp.
125
138
. 10.1016/j.ymssp.2017.04.005
34.
Segala
,
D. B.
, and
Chelidze
,
D.
,
2014
, “
Robust and Dynamically Consistent Model Order Reduction for Nonlinear Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control.
,
137
(
2
), p.
021011
. https://doi.org/10.1115/1.4028470
35.
Chelidze
,
D.
,
2014
, “
Identifying Robust Subspaces for Dynamically Consistent Reduced-Order Models
,” In
Kerschen
G.
(ed.)
Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer
,
Cham
.
36.
Ilbeigi
,
S.
, and
Chelidze
,
D.
,
2018
, “
A New Approach to Model Reduction of Nonlinear Control Systems Using Smooth Orthogonal Decomposition
,”
Int. J. Robust Nonlinear Control
,
28
(
15
), pp.
4367
4381
.
37.
Guo
,
X.
, and
Przekop
,
A.
,
2010
, “
Energy-based Modal Basis Selection Procedure for Reduced-order Nonlinear Simulation
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Orlando, FL
,
Apr. 12–15
,
AIAA
.
38.
Bhattacharyya
,
S.
, and
Cusumano
,
J. P.
,
2019
, “
The Importance of Energy Criteria for Selecting Modes in Reduced Order Modeling
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
ASME
.
39.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
40.
Fernandez
,
T. N.
,
2010
, “
Analytical Computation of Proper Orthogonal Decomposition Modes and n-width Approximations for the Heat Equation with Boundary Control
.,”
Master’s thesis
,
University of Tennessee
,
Knoxville, TN
.
41.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound. Vib.
,
252
(
3
), pp.
527
544
. 10.1006/jsvi.2001.4041
42.
Liang
,
Y.
,
Lin
,
W.
,
Lee
,
H.
,
Lim
,
S.
,
Lee
,
K.
, and
Sun
,
H.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—part II: Model Reduction for MEMS Dynamical Analysis
,”
J. Sound. Vib.
,
256
(
3
), pp.
515
532
. 10.1006/jsvi.2002.5007
43.
Djouadi
,
S. M.
,
2008
, “
On the Optimality of the Proper Orthogonal Decomposition and Balanced Truncation
,”
2008 47th IEEE Conference on Decision and Control
,
Cancun, Mexico
,
Dec. 9–11
,
IEEE
.
You do not currently have access to this content.