Abstract

In order to explore the influence of combined gyroscopic coupling effect on the gyroscopic system, the dynamics of a beam undergoing both rotating and spinning motions as a bi-gyroscopic system is studied. The natural frequencies, modes, and stability of such a bi-gyroscopic system have been studied by the standard eigenvalue problems. The bifurcation series of frequencies and corresponding modal motions have been presented to show the gyroscopically coupled motions. The complex modes of the proposed bi-gyroscopic systems, such as whirling motions and in-plane reeling motions, have been illustrated.

References

1.
Cheng
,
J. L.
,
Xu
,
H.
, and
Yan
,
A. Z.
,
2006
, “
Frequency Analysis of a Rotating Cantilever Beam Using Assumed Mode Method With Coupling Effect
,”
Mech. Based Des. Struct. Machines
,
34
(
1
), pp.
25
47
. 10.1080/15367730500501587
2.
Hashemi
,
S. M.
, and
Richard
,
M. J.
,
2001
, “
Natural Frequencies of Rotating Uniform Beams With Coriolis Effects
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
444
455
. 10.1115/1.1383969
3.
Guo
,
X. Y.
,
Yang
,
X. D.
, and
Wang
,
S. W.
,
2019
, “
Dynamic Characteristics of a Rotating Tapered Cantilevered Timoshenko Beam With Preset and Pre-Twist Angles
,”
Int. J. Struct. Stability Dyn.
,
19
(
4
), p.
1950043
. 10.1142/S0219455419500433
4.
Huo
,
Y. L.
, and
Wang
,
Z. M.
,
2016
, “
Dynamic Analysis of a Rotating Double-Tapered Cantilever Timoshenko Beam
,”
Archive Appl. Mech.
,
86
(
6
), pp.
1147
1161
. 10.1007/s00419-015-1084-6
5.
Banerjee
,
J. R.
, and
Kennedy
,
D.
,
2014
, “
Dynamic Stiffness Method for Inplane Free Vibration of Rotating Beams Including Coriolis Effects
,”
J. Sound Vib.
,
333
(
26
), pp.
7299
7312
. 10.1016/j.jsv.2014.08.019
6.
Anilkumar
,
A.
, and
Kartik
,
V.
,
2020
, “
In-Plane Vibration of a Rigid Body Attached to a Flexible Rotating Beam
,”
J. Sound Vib.
,
475
, p.
115245
. 10.1016/j.jsv.2020.115245
7.
Ma
,
H.
,
Wang
,
D.
,
Tai
,
X. Y.
, and
Wen
,
B. C.
,
2017
, “
Vibration Response Analysis of Blade-Disk Dovetail Structure Under Blade Tip Rubbing Condition
,”
J. Vib. Control
,
23
(
2
), pp.
252
271
. 10.1177/1077546315575835
8.
Parker
,
R. G.
, and
Sathe
,
P. J.
,
1999
, “
Free Vibration and Stability of a Spinning Disk-Spindle System
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
391
396
. 10.1115/1.2893992
9.
Parker
,
R. G.
, and
Sathe
,
P. J.
,
1999
, “
Exact Solutions for the Free and Forced Vibration of a Rotating Disk-Spindle System
,”
J. Sound Vib.
,
223
(
3
), pp.
445
465
. 10.1006/jsvi.1998.2097
10.
Zu
,
J. W. Z.
, and
Han
,
R. P. S.
,
1992
, “
Natural Frequencies and Normal-Modes of a Spinning Timoshenko Beam With General Boundary-Conditions
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
S197
S204
. 10.1115/1.2899488
11.
Sturla
,
F. A.
, and
Argento
,
A.
,
1996
, “
Free and Forced Vibrations of a Spinning Viscoelastic Beam
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
463
468
. 10.1115/1.2888206
12.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
13.
Wu
,
J. S.
,
Lin
,
F. T.
, and
Shaw
,
H. J.
,
2014
, “
Analytical Solution for Whirling Speeds and Mode Shapes of a Distributed-Mass Shaft With Arbitrary Rigid Disks
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
034503
. 10.1115/1.4024670
14.
Behzad
,
M.
, and
Bastami
,
A. R.
,
2004
, “
Effect of Centrifugal Force on Natural Frequency of Lateral Vibration of Rotating Shafts
,”
J. Sound Vib.
,
274
(
3–5
), pp.
985
995
. 10.1016/S0022-460X(03)00659-X
15.
Chung
,
J.
,
Kang
,
N. C.
, and
Lee
,
J. M.
,
1996
, “
A Study on Free Vibration of a Spinning Disk
,”
KSME Int. J.
,
10
(
2
), pp.
138
145
. 10.1007/BF02953653
16.
Liang
,
F.
,
Yang
,
X. D.
,
Qian
,
Y. J.
, and
Zhang
,
W.
,
2018
, “
Transverse Free Vibration and Stability Analysis of Spinning Pipes Conveying Fluid
,”
Int. J. Mech. Sci.
,
137
, pp.
195
204
. 10.1016/j.ijmecsci.2018.01.015
17.
Bahaadini
,
R.
, and
Saidi
,
A. R.
,
2018
, “
Stability Analysis of Thin-Walled Spinning Reinforced Pipes Conveying Fluid in Thermal Environment
,”
Eur. J. Mech. A/Solids
,
72
, pp.
298
309
. 10.1016/j.euromechsol.2018.05.015
18.
Yang
,
X. D.
,
Yang
,
J. H.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Melnik
,
R. V. N.
,
2018
, “
Dynamics of a Beam With Both Axial Moving and Spinning Motion: an Example of Bi-Gyroscopic Continua
,”
Eur. J. Mech. A/Solids
,
69
, pp.
231
237
. 10.1016/j.euromechsol.2018.01.006
19.
Yang
,
X. D.
,
Wang
,
S. W.
,
Zhang
,
W.
,
Yang
,
T. Z.
, and
Lim
,
C. W.
,
2018
, “
Model Formulation and Modal Analysis of a Rotating Elastic Uniform Timoshenko Beam With Setting Angle
,”
Eur. J. Mech. A/Solids
,
72
, pp.
209
222
. 10.1016/j.euromechsol.2018.05.014
20.
Zhang
,
Y.-W.
,
Yang
,
X.-D.
, and
Zhang
,
W.
,
2020
, “
Modeling and Dyanmic Analysis of Body-Fixed and Space-Fixed Flexible Rotor
,”
J. Vib. Eng. Technol.
,
8
(
1
), pp.
59
66
. 10.1007/s42417-018-0057-9
21.
Pai
,
P. F.
,
Qian
,
X.
, and
Du
,
X. W.
,
2013
, “
Modeling and Dynamic Characteristics of Spinning Rayleigh Beams
,”
Int. J. Mech. Sci.
,
68
, pp.
291
303
. 10.1016/j.ijmecsci.2013.01.029
22.
Ettles
,
C.
,
1978
, “
Bearing and Rotor Dynamics
,”
Tribol. Int.
,
11
(
1
), pp.
26
26
. 10.1016/0301-679X(78)90099-3
23.
Katz
,
R.
,
Lee
,
C. W.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1988
, “
The Dynamic-Response of a Rotating Shaft Subject to a Moving Load
,”
J. Sound Vib.
,
122
(
1
), pp.
131
148
. 10.1016/S0022-460X(88)80011-7
24.
Chen
,
H.-Y.
,
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2020
, “
Elimination of Multimode Resonances of Composite Plate by Inertial Nonlinear Energy Sinks
,”
Mech. Syst. Signal Process.
,
135
, p.
106383
. 10.1016/j.ymssp.2019.106383
25.
Young
,
T. H.
, and
Chen
,
M. S.
,
2010
, “
Dynamic Stability of a Spinning Timoshenko Beam Subjected to a Moving Mass-Spring-Damper Unit
,”
Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
,
July 12–24
.
26.
Païdoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
,
Elsevier Academic Press
,
London
.
You do not currently have access to this content.