Abstract
The flow-induced vibration of a flexible splitter plate behind a circular cylinder is investigated experimentally in this study. Unlike previous studies that mainly devoted to flow dynamics, the full-field three-dimensional (3D) dynamic deformation of a splitter plate behind a cylinder in the wind tunnel is measured with an easy-to-implement, compact but practical single-camera high-speed (SCHS) stereo-digital image correlation (DIC) system. The system parameters of the wind tunnel, the configuration of the SCHS-DIC system, and the measurement principles are introduced first. Then, the effectiveness, accuracy, and stability of the SCHS stereo-DIC system are verified by the deformation measurements of the high-stiffness fixed cylinder. Finally, the full-field dynamic 3D deformation measurements of different splitter plates are carried out under different wind speeds. Results of the polyvinyl chloride (PVC) splitter plate show that the out-of-plane deformation is much larger than in-plane deformation. The maximum deformation occurs at the tip region of the plate, the position of which can move non-periodically along the free-end edge. The full-field deformation of the plate presents the characteristics of complex vortex distribution with high and low fluctuations, and exhibits an asymmetric and non-periodic oscillation in the out-of-plane direction. The comparison results reveal how the wind load and material type of the plate affect the oscillation characteristics.